Publications

Google Scholar: https://scholar.google.com/citations?hl=en&user=bE5VCKsAAAAJ
ξ: (co-)first author; ϕ: corresponding author

Preprints & Manuscripts submitted or in preparation:

Ran, Mξ., Lu, Zϕ., & Golomb, J.D. (in revision). The influence of a moving object’s location on object identity judgements. PsyArXiv. https://doi.org/10.31234/osf.io/qcrhu [Preprint Pdf]

Lu, Zξϕ., & Wang, Y. (under review). Teach CORnet Human fMRI representations for Enhanced Model-Brain Alignment. Arxiv. https://doi.org/10.48550/arXiv.2407.10414 [Preprint Pdf]

Lu, Zξϕ., Wang, Y., & Golomb, J.D. (submitted). Achieving more human-brain like vision via human EEG representational alignment. Arxiv. https://doi.org/10.48550/arXiv.2401.17231 [Preprint Pdf]

Zhang, Mξ., Lu, Z., Zhou, Y., Ma, W., Li, X., Otani, Sϕ., & Wang, Zϕ. (submitted). Transcultural differences in neural representations of Theory of Mind between Chinese and Japanese. [Pdf]

Zhang, Mξ., Lu, Zξ., Su, H., Kwok, S.C., Li, X., & Wang, Zϕ. (submitted). Musical expertise attenuates cross-modal fast-“same” effect of pitches: an ERP study. PsyArXiv. https://doi.org/10.31234/osf.io/w74nr [Preprint Pdf]

Clayson, P.Eξ., …, Lu, Z., …, Langer. N. (2023 accepted, stage 1 registered replication). Contralateral delay activity as a marker of visual working memory capacity: a multi-site registered replication. PsyArXiv. https://psyarxiv.com/shdea/ [Preprint Pdf]

Lu, Zξϕ., & Golomb, J.D. (in preparation). The influence of task-irrelevant landmarks on spatiotopic localization and object-location binding.

Lu, Zξϕ., & Golomb, J.D. (in preparation). Exploring human vision through Img2EEG: An encoding framework generating high-resolution temporal EEG signals from visual inputs.

Peer-reviewed publications:


Lu, Zξϕ., Wang, Y., & Golomb, J.D. (2024). ReAlnet: Achieving more human-brain like vision via human neural representational alignment. Proceedings of the Conference on Cognitive Computational Neuroscience 2024 (CCN 2024). [https://2024.ccneuro.org/pdf/88_Paper_authored_ReAlnet_CCN2024_Authored.pdf][Pdf]

Lu, Zξϕ., & Golomb, J.D. (2024). Probing Human Vision via an Image-to-EEG Encoding Model. Proceedings of the Conference on Cognitive Computational Neuroscience 2024 (CCN 2024). [https://2024.ccneuro.org/pdf/337_Paper_authored_Img2EEG_CCN2024_Authored.pdf][Pdf]

Lu, Zξϕ., & Golomb, J.D. (2024 Accepted; Reviewed Preprint). Human EEG and artificial neural networks reveal disentangled representations of object real-world size in natural images. eLife. Preprint online: https://doi.org/10.7554/eLife.98117.1 [Pdf]

Lu, Zξϕ., Li, W., Nie, L., & Zhao, K. (2024). An easy-to-follow handbook for electroencephalogram data analysis with Python. Brain-X. e64. https://doi.org/10.1002/brx2.64 [Pdf]

Lu, Zξϕ., & Golomb, J.Dϕ. (2024). Dynamic saccade context triggers more stable object-location binding. Journal of Experimental Psychology: General. 153(4), 873-888. (APA "Editor's Choice" Paper!) https://doi.org/10.1037/xge0001545 [Pdf]

Lu, Zξ., & Ku, Yϕ. (2023). Bridging the Gap between EEG and DCNNs Reveals a Fatigue Machanism of Facial Repetition Suppression. iScience. 108501. https://doi.org/10.1016/j.isci.2023.108501 [Pdf]

Lu, Zξϕ. (2023). Visualizing the Mind’s Eye: A Future Perspective on Applications of Image Reconstruction from Brain Signals to Psychiatry. Psychpradiology. kkad022. https://doi.org/10.1093/psyrad/kkad022 [Pdf]

Lu, Zξϕ., & Golomb, J.D. (2023). Object real-world size representations in human brains and artificial neural networks. Proceedings of the Conference on Cognitive Computational Neuroscience 2023 (CCN 2023). https://doi.org/10.32470/CCN.2023.1227-0 [https://2023.ccneuro.org/proceedings/0000909.pdf][Pdf]

Lu, Zξϕ., & Golomb, J.D. (2023). Generate your neural signals from mine: individual-to-individual EEG converters. Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023). https://escholarship.org/uc/item/5xn0885t [Pdf]

Lu, Zξ., Shafer-Skelton, A., & Golomb, J.Dϕ. (2022). Gaze-centered spatial representations in human hippocampus. Proceedings of the Conference on Cognitive Computational Neuroscience 2022 (CCN 2022). https://doi.org/10.32470/CCN.2022.1088-0 [https://2022.ccneuro.org/proceedings/0000614.pdf][Pdf]

Lu, Zξ., & Ku, Yϕ. (2020). NeuroRA: A Python toolbox of representational analysis from multi-modal neural data. Frontiers in Neuroinformatics. 14:563669. https://doi.org/10.3389/fninf.2020.563669 [Pdf][Link][Code]

Lu, Zξϕ. (2020). PyCTRSA: A Python package for cross-temporal representational similarity analysis-based E/MEG decoding. Zenodo. https://doi.org/10.5281/zenodo.4273674 [Link][Code]