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Abstract: 

Human brains have the ability to process various object 
features, not only color, shape, texture, and animacy, but 
also real-world size, during object recognition. However, 
studies examining representations of perceived real-
world size may be confounded with a related dimension, 
perceived real-world depth. In this study, we aimed to 
isolate representations of object real-world size from 
both visual (image) size and perceived depth information 
in both human brains and artificial neural networks using 
the THINGS EEG2 dataset, which incorporated more 
naturalistic stimuli. Our results successfully 
differentiated various visual information and revealed a 
pure representation of object real-world size in human 
brains. Furthermore, representational comparisons with 
different artificial neural networks offers further insight 
into the dissociated mechanisms of forming real-world 
size, visual size, and real-world depth perception. 
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Instructions 

If we are viewing an apple while walking around in the 
real world, as we change our perspective and distance, 
the apple’s visual (retinal) size varies, but we can still 
perceive the apple as having a constant real world size. 
How and when is real world size represented during 
visual processing? Behavioral studies have 
demonstrated familiar-size stroop effects (Konkle & 
Oliva, 2012a; Long & Konkle, 2017) and canonical 
visual size effects (Chen et al., 2022; Konkle & Oliva, 
2011) related to object real-world size. Also, human 
fMRI studies using univariate analysis have found that 
the ventral temporal cortex encodes object real-world 
size information (Huang et al., 2022; Konkle & 
Caramazza, 2013; Konkle & Oliva, 2012b). These 
findings suggest real-world size is a fundamental 
property of object representation. However, real-world 
size is closely related to distance in depth. For instance, 
because a walnut has a smaller real-world size than a 
basketball, if we viewed images of those two objects 
with matched visual (retinal) size, we would perceive 
the walnut as closer to us than the basketball.  

In previous neuroimaging studies of perceived real-
world size, researchers controlled the visual size of 
objects, but did not control for perceived real-world 
depth, which could also serve as a dimension to explain 
the results. Deep convolutional neural networks (CNNs) 
have also been found to represent real-world size in a 
recent computational study (Huang et al., 2022). 
However, they used same fixed visual size image 
dataset, making it difficult to determine whether CNNs 
encode real-world size or depth. While an increasing 
number of studies confirm that CCNs exhibit 
representations similar to human visual systems (Cichy 
et al., 2016; Güçlü & van Gerven, 2015; Yamins et al., 
2014; Yamins & DiCarlo, 2016), some recent works 
indicated that semantic embedding and multimodal 
neural networks could better explain human visual 
representations in visual areas and even hippocampus 
than vision-only networks (Choksi, Mozafari, et al., 
2022; Choksi, Vanrullen, et al., 2022; Conwell et al., 
2022; Doerig et al., 2022; Jozwik et al., 2023; Wang et 
al., 2022). Investigating how different artificial neural 
networks (ANNs) represent object real-world size and 
other size and depth features can not only help us 
understand how our brains process object features but 
also provide insights for developing more brain-like 
models. 

In the current study, we aimed to used computational 
methods to distinguish the representations of object 
real-world size and other size and depth features in both 
human brains and artificial neural networks based on an 
open EEG dataset, THINGS EEG2 (Gifford et al., 2022). 
The images used in this dataset are more naturalistic 
and include objects that vary in real world size, depth, 
and visual size (as opposed to prior datasets where 
images were isolated objects all presented at the same 
visual size). Our results reveal that human brains 
indeed have pure object real-world size representations, 
which emerge later in processing than real-world depth 
and visual size representations. Additionally, although 
size and depth are closely related, representational 
results from different ANNs suggest that the perception 



of size and depth may arise through distinct 
mechanisms. 

Methods 

Image and EEG dataset: We utilized the open dataset 
from THINGS EEG2 (Gifford et al., 2022) , which 
includes EEG data from 10 healthy human subjects 
viewing 16740 images of natural scenes and objects. 
We specifically used the ‘test’ dataset portion, which 
includes 1600 trials corresponding to 200 images with 
80 trials per image. We used already pre-processed 
data from 17 channels overlying occipital and parietal 
cortex. 

ANN models: We used four pre-trained models, 
including one visual model (ResNet-101 (He et al., 
2016)), one semantic model (Word2Vec (Mikolov et al., 
2013)), one multi-modal (visual+semantic) model (CLIP 
with a ResNet-101 backbone (Radford et al., 2021)), 
and one brain-like model (CORnet-S (Kubilius et al., 
2019)). We used THINGSvision (Muttenthaler & Hebart, 
2021) to obtain ANN activations for the images. 

Representational similarity analysis (RSA): We first 
constructed four hypothesis-based representational 
dissimilarity matrices (RDMs): (1) Real-World Size 
RDM based on the perceived real-world size of the 
objects (human ratings from Stoinski et al., 2022), (2) 
Visual Size RDM based on the visual size of the objects 
(the measured size of the segmented object in pixels), 
(3) Real-World Depth RDM based on the perceived 
depth of the objects (estimated as visual size index / 
real-world size index), and (4) a Low-Level Visual RDM 
based on low-level visual similarity (image pixel-wise 
correlations). For EEG, we constructed timepoint-by-
timepoint neural RDMs for each subject using 
classification-based decoding for each pair of objects, 
with decoding accuracy as the dissimilarity index. For 
ANN models, we constructed seven RDMs:  early 
(second convolutional layer) and late (last visual layers) 
for ResNet, CLIP, and CORnet, plus a single RDM for 
Word2Vec. For RSA (Kriegeskorte et al., 2008), we 
calculated partial correlations between (1) the 
hypothesis-based RDMs and timepoint-by-timepoint 
EEG neural RDMs, and (2) the hypothesis-based 
RDMs and the ANN RDMs. All RSA was implemented 
using NeuroRA (Lu & Ku, 2020). 

Results 

Dynamic representations in human brains  

The Real-World Size RDM showed significant 
representational similarity with EEG neural RDMs from 
169-240ms and 490-550ms. The partial correlation 

technique suggests that this reflects a pure 
representation of object real-world size in the human 
brain, independent from Visual Size and Real-World 
Depth, which showed significant representational 
similarity at different time windows.  

 

Figure 1: (A) Temporal similarities (partial correlations) 
between hypothesis-based RDMs and EEG RDMs. (B) 
Significant time-windows of partial correlation. Color-
coded small squares indicate significant timepoints, 
cluster-corrected p<.05. 

Representations in artificial neural networks 

We found significant representations of real-world size 
in Word2Vec and the late layers of ResNet, CLIP and 
CORnet, which might suggest that object real-world 
size emerged later, possibly from semantic information. 
Visual size representation was significant in the early 
layers of models and only slightly in the late layer of 
ResNet. Real-world depth representation was 
significant in the early layer of ResNet, and both early 
and late layers of CLIP. All models represent low-level 
visual information. 

 

Figure 2: Real-world size, visual size, real-world depth, 
and low-level visual representations in different ANNs. 



Conclusion 

Our study applied computational methods to distinguish 
the representations of object real-world size and other 
size and depth features in both human brains and ANNs. 
Consistent with prior studies reporting real-world size 
representations (Huang et al., 2022; Konkle & 
Caramazza, 2013; Konkle & Oliva, 2012b) , we found 
that human brains and ANNs contain significant 
information about real-world size. Critically, unlike the 
prior studies, we were able to dissociate pure real-world 
size representations from both visual size and real-
world depth representations, Moreover, using EEG we 
uncovered a representational timeline for visual object 
processing, with low-level visual information 
represented first, followed by real-world depth and 
visual size, and finally real-world size. Finally, our ANN 
results offer further insight, and might suggest that 
although real-world object size and depth are closely 
related, the combination of semantic and visual 
information may help us perceive real-world size, while 
real-world depth perception may need only visual 
information. 
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