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Bridging the gap between EEG
and DCNNs reveals a fatigue mechanism
of facial repetition suppression

Zitong Lu1 and Yixuan Ku2,3,4,*

SUMMARY

Facial repetition suppression, awell-studied phenomenon characterized by decreased neural responses to
repeated faces in visual cortices, remains a subject of ongoing debate regarding its underlying neural
mechanisms. Our research harnesses advanced multivariate analysis techniques and the prowess of
deep convolutional neural networks (DCNNs) in face recognition to bridge the gap between human elec-
troencephalogram (EEG) data and DCNNs, especially in the context of facial repetition suppression. Our
innovative reverse engineering approach, manipulating the neuronal activity in DCNNs and conducted
representational comparisons between brain activations derived from human EEG and manipulated
DCNN activations, provided insights into the underlying facial repetition suppression. Significantly, our
findings advocate the fatigue mechanism as the dominant force behind the facial repetition suppression
effect. Broadly, this integrative framework, bridging the human brain and DCNNs, offers a promising tool
for simulating brain activity and making inferences regarding the neural mechanisms underpinning com-
plex human behaviors.

INTRODUCTION

In our daily experiences, we frequently encounter recurring or similar stimuli alongside new ones. When we repeatedly receive the same or

similar information input, our brain’s neural activity tends to diminish compared to the initial exposure, a phenomenon referred to as repe-

tition suppression. Numerous electrophysiological studies have observed that neurons sensitive to visual information in the interior temporal

cortex exhibit reduced responses when exposed to repetitive stimuli.1–7 Additionally, research has shown that repeated stimuli can lead to a

decrease in the blood oxygenation level-dependent (BOLD) response in functional magnetic resonance imaging (fMRI) studies.8

Within the field of face perception, numerous electroencephalogram (EEG) and magnetoencephalography (MEG) studies have reported

various event-related potential (ERP) components associated with facial repetition suppression. These include the N170,9–15 P200,16–20

N250r,21–26 and N400.27–31 Despite these observations, the precise neuronal mechanism responsible for repetition suppression remains a

topic of ongoing debate.

Previous research on facial repetition suppression has predominantly relied on univariate analysis methods, often overlooking the dynamic

nature and variances in neural representations. However, in the past decade, cognitive neuroscience has seen a growing trend toward the

adoption of multivariate analysis techniques. These include methods like correlation or classification-based Multivariate Pattern Analysis

(MVPA)32–36 and representational similarity analysis (RSA).37,38 Thesemultivariate analysis tools provide valuable insights into the neuralmech-

anisms underlying complex cognitive processes by capturing the representational patterns through which our brains encode information.

RSA, in particular, enables researchers to conduct representational comparisons across diversemodalities. For instance, it allows for the com-

parison of brain activity patterns with activations in computational models.39–47 These advancedmethods open up new avenues for a deeper

understanding of neural processing and encoding in the brain.

Grill-Spector et al.48 proposed three potential models (Fatigue, Sharpening, and Facilitation) to explain repetition suppression in neural

coding patterns, drawing from a range of studies involving single-cell recordings, fMRI, and EEG/MEG. These models offer different hypoth-

eses about how the brain processes repeated stimuli. The Fatigue model proposes that neurons with stronger initial responses to a stimulus

exhibit higher repetition suppression. The Sharpening model suggests that neurons encoding irrelevant features of the stimulus show repe-

tition suppression, leading to a more focused representation. The Facilitation model posits that repetition accelerates stimulus processing,
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reducing waiting time. To determine which of these models is more likely to underlie facial repetition suppression in human brains, multivar-

iate analysis techniques can be employed.

Recent advances in computer vision have led to the development of deep convolutional neural network (DCNN) models for face recog-

nition49–52 that have achieved human-level performance.53 In parallel, researchers in cognitive neuroscience and computer science have

begun exploring the similarities and differences between human brains and artificial intelligence (AI) models in information processing.

Studies that combine brain activity measurements and DCNNs have found that the hierarchical structure of the ventral visual pathway and

DCNNs share similar processing representations of visual information.39,40,44,54 The idea of reverse engineering, where the representation

of an AI model can be modified based on theoretical hypotheses to align with the representation of human brains, provides a promising so-

lution to investigate the neural mechanism of repetition suppression. On the one hand, the current challenges in understanding the mech-

anisms of facial repetition suppression in the human brain is the inherent difficulty in recording single-neuron activity. However, DCNNs pro-

vide a unique platform where we can manipulate the activation of neurons, offering an avenue to probe these mechanisms more directly. On

the other hand, while there has been a burgeoning interest in linking human brain activity with DCNNs to elucidate neural mechanisms un-

derlying object and face perception, to our knowledge, no studies have extended this approach to explore the specific issue of facial repe-

tition suppression. Therefore, we aimed to apply reverse engineering methods to bridge the gap between human brain activity and DCNNs.

We can potentially manipulate neuronal activity in DCNNs and compare this at the population-level with measurable human EEG activity to

shed light on the possible mechanism underlying facial repetition suppression.

Our study aimed to delve into the neural mechanism of facial repetition suppression using innovative computational approaches. Initially,

we investigated the dynamic representations of facial information and confirmed the presence of the facial repetition suppression effect in

human brains. We accomplished this using a classification-basedMVPAmethod on human EEG data (Figures 1A–1C). Subsequently, we em-

ployed the concept of reverse engineering to develop two potential repetition suppression models, namely the Fatigue and Sharpening

models. Thesemodels were used tomanipulate the activation of a DCNN (Figures 1D and 1E).We then conducted cross-modal RSA between

human brain activity and the activations in the modified DCNNs (Figure 1F). Our findings strongly suggest that the fatigue mechanism is the

more plausible neural mechanism underlying facial repetition suppression in the human brain.

RESULTS

Facial repetition suppression in human brains

The classification-based EEGdecoding results for the three presentation conditions are presented in Figure 2. Time-by-time decoding results

are illustrated in Figure 2A. (1) New vs. Immediate Decoding: Decoding accuracies for both familiar and unfamiliar faces were consistently

above chance levels from 200ms to 1500ms. Similarly, decoding accuracies for scrambled faces exceeded chance levels from 360ms to

1500ms. Notably, during specific time intervals, decoding accuracies for familiar faces surpassed those for unfamiliar faces: from 620ms to

800ms, 880ms–1100ms, and 1120ms–1220ms. Additionally, decoding accuracies for familiar faces were consistently superior to those for

scrambled faces from 240ms to 1500ms. Furthermore, decoding accuracies for unfamiliar faces were significantly better than those for scram-

bled faces from 240ms to 960ms.

(2) New vs. Delayed Decoding: Significant decoding accuracies for familiar faces were detected within limited time intervals, specifically

from 660ms to 780ms, 860ms–920ms, and 1100ms–1160ms. Moreover, during the period from 580ms to 800ms, decoding accuracies for

familiar faces were significantly higher than those for scrambled faces.

(3) Immediate vs. Delayed Decoding: Decoding accuracies for familiar faces consistently outperformed chance levels from 280ms to

1180ms. Similarly, decoding accuracies for unfamiliar faces exceeded chance levels from 240ms to 980ms, and those for scrambled faces

from 560ms to 900ms. Moreover, during the interval from 440ms to 840ms, decoding accuracies for familiar faces were significantly better

than those for scrambled faces, while decoding accuracies for unfamiliar faces surpassed those for scrambled faces from 440ms to 780ms.

Cross-temporal decoding results are displayed in Figure 2B. The most pronounced differences in neural patterns were observed between

the New and Immediate conditions. Conversely, there were minimal significant differences between the New and Delayed conditions. Addi-

tionally, the differences in neural patterns for familiar faces weremore substantial compared to those for unfamiliar faces and scrambled faces.

These results offer valuable insights into the temporal dynamics of neural representations during different presentation conditions,

emphasizing the robustness of decoding accuracies in distinguishing between these conditions, particularly in theNew vs. Immediate decod-

ing scenario. They shed light on the neural mechanism of facial repetition suppression in human brains. Despite the identical input face im-

ages, notable differences were observed in neural representations between newand immediate repetition conditions. This suppression effect

diminished as the interval between repetitions increased. Consequently, when the same face image was repeatedly shown after several trials,

the neural representation became more similar to that of the initial presentation. Furthermore, familiar faces elicited a stronger repetition

suppression effect compared to unfamiliar and scrambled faces.

Modified representations based on different repetition suppression models in DCNNs

Regarding the DCNNs, we initially extracted features corresponding to the 450 face images from all even layers and computed 450 3 450

RDMs (Figures S1B and S2). To simulate the facial repetition suppression effect in DCNNs, we adjusted neural representations in both

VGG-Face and untrained VGG using the Fatigue and Sharpening models, respectively. Figure 3 displays DCNN RDMs of layer 16 derived

from DCNN’s internal activations that weremodified by the two repetition suppressionmodels. Under the Fatigue model, only the activation

of the node with a higher response to the face stimulus exhibited repetition suppression, and nodes with higher activation experienced more
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suppression. Under the Sharpening model, only the activation of the node with a lower response to the face stimulus exhibited repetition

suppression, and nodes with low responses were not activated under repetition conditions. Modified 1350 3 1350 RDMs for all even layers

are presented in Figure S3.

Comparisons between brains and DCNNs revealing a fatigue mechanism

After compressing the DCNN RDMs, we computed the similarity between EEG RDMs and the modified DCNN models, then calculated the

difference in cross-modal similarity between VGG-Face and the untrained VGG as the valid similarity. Figure 4A illustrates the valid

A B

C D E

F

Figure 1. Experimental procedure and key analysis flow chart

(A) Overview of the experimental sequences.

(B) Illustration of the 9 experimental conditions, consisting of 3 face conditions by 3 presentation conditions.

(C) Schematic representation of cross-temporal EEG decoding.

(D) Diagram depicting the process of calculating DCNN RDMs (Representational Dissimilarity Matrices).

(E) Schematic illustration of the Fatigue and Sharpening repetition suppression models.

(F) Flowchart outlining the procedure for cross-modal RSA comparisons between EEG andDCNNs. Note: The two face images displayed here are from the public

domain and are available at https://commons.wikimedia.org for illustrative purposes only. The actual images used during the experiment were described in

Wakeman & Henson, 2015.
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representational similarity between activations modified by the Fatigue model for all even layers in DCNNs and EEG signals. DCNN repre-

sentations modified by the Fatigue model exhibited significant representational similarity with human brains. We observed significant valid

similarities in many layers (layer 2: 120ms–640ms, 700ms–1420ms; layer 4: 120ms–460ms, 1040ms–1220ms; layer 10: 480ms–560ms, 1380ms–

1500ms; layer 12: 260ms–380ms, 420ms–560ms, 1380ms–1500ms; layer 14: 160ms–1000ms; layer 16: 200ms–1320ms). However, DCNN rep-

resentations modified by the Sharpening model showed almost no significant similarity with human brains. We only found significant valid

similarities from 640ms to 680ms in layer 8.

In detail, Figure 4B presents the cross-temporal valid similarity of layer 16, which is the last layer in the VGG structure and contains themost

relevant information for face recognition. When modified by the Fatigue model, the DCNN’s representations exhibited strong and extensive

valid similarity with human brains. However, representations of the DCNNmodified by the Sharpeningmodel only displayedweak similarities

with brain activity.

Cross-modal comparisons suggest that simulating the activation in DCNNs based on a fatigue mechanism, rather than a sharpening

mechanism, could induce more similar representations with human brain activities. Therefore, the facial repetition suppression effect in

face perception is more likely caused by the fatigue mechanism.

New vs. Immediate New vs. Delayed Immediate vs. Delayed

New vs. Immediate New vs. Delayed Immediate vs. Delayed
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Figure 2. Temporal facial repetition suppression in human brains

(A) Time-by-time decoding results. The top of each plot is adorned with color-coded small squares indicating p < 0.01 (cluster-based permutation test) of

decoding accuracy significantly greater than chance (ranging from dark to light orange for familiar, unfamiliar, and scrambled faces). The bottom of each plot

features color-coded small squares indicating p < 0.01 (cluster-based permutation test) of significant differences in decoding accuracy between two face

conditions (ranging from dark to light blue for familiar vs. unfamiliar faces, familiar vs. scrambled faces, and unfamiliar vs. scrambled faces). Line width

reflects GSEM.

(B) Cross-temporal decoding results. The baseline for classification-based decoding accuracy is 50%. Regions where average accuracy significantly exceeds

chance are highlighted with a light gray outline (cluster-based permutation test, p < 0.01).
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DISCUSSION

In this study, we employed a unique approach that combines human EEG and DCNNs to delve into the neural mechanism of facial repetition

suppression in face perception. We accomplished this through classification-based EEG decoding and cross-modal RSA and revealed a fa-

tigue mechanism of human face repetition suppression.

Initially, our EEG-based decoding results provided insights into the temporal dynamics of neural representations across different face pre-

sentation conditions. We observed a facial repetition suppression effect that was more pronounced for familiar faces and less so for scram-

bled faces. This effect decreased as the interval between repeated viewings increased. Notably, our findings revealed distinct neural repre-

sentations between new and immediately repeated conditions, demonstrating the influence of repetition suppression. Furthermore, the

repetition suppression effect was more robust for familiar faces than for unfamiliar or scrambled ones.

Subsequently, we embarked on a reverse engineering endeavor to delve into the mechanisms underlying facial repetition suppression in

the human brain. Our approach involved themodification of neural activations in AI models capable of achieving human-level performance in

face recognition. Specifically, we honed in on the repetition suppression mechanisms pertaining to face-specific information using the

VGG-Face model, a neural network trained on an extensive dataset of facial images for the purpose of face identification. To distill the infor-

mation relevant to facial features within the DCNN, we took a unique approach. We contrasted the results obtained from the VGG-Face

model with those of an untrained VGGmodel. This juxtaposition allowed us to extract the valid representational similarity between the trained

DCNN and the human brain, focusing on their shared representations of facial stimuli. The outcome of this analysis revealed a significant

convergence between the representation of the DCNN model and the neural patterns observed in the human brain when employing the

Fatigue model for modification. This alignment was not only observed in the later layers of the DCNN but also extended to the early layers,

mirroring the hierarchical structure of the human brain’s visual processing pathway.

Moreover, our cross-temporal analysis illuminated that the similarities between the DCNN model’s representations and the neural pat-

terns observed in the human brain encompassed a broader temporal range. Intriguingly, these similarities were not confined solely to the

later layers of the DCNN; they extended to the early layers as well. This finding aligns with previous research that has drawn parallels between

the hierarchical structure of DCNNs and the visual processing pathway in the human brain.39,40 Collectively, these results provide compelling

evidence that the attenuation of neural activations in the process of repetition suppression, driven by the fatiguemechanism, occurs not only

in neurons processing high-level face features but also in those handling low-level facial information. This underscores the robustness and

comprehensiveness of the fatigue-based repetition suppression phenomenon across different neural processing stages, mirroring the multi-

faceted nature of facial perception in the human brain.

It is worth noting that while numerous human fMRI studies55–62 have given support to the idea that repetition suppression is indicative of a

reduction in prediction error within the predictive coding framework,63,64 recent electrophysiological investigations have put forth an alter-

native perspective. These electrophysiological studies have provided evidence in favor of the fatigue mechanism, positing that it involves

bottom-up or local adaptation, as opposed to sharpening or sparseness representations and the predictive coding hypothesis.

However, the collection of human electrophysiological data presents substantial challenges, leading to a scarcity of human neuroimaging

studies that could corroborate these findings.65 Our present study is innovative in that it introduces state-of-the-art computational methods,

combining noninvasive human EEGwith DCNNs, to delve into the neural underpinnings of facial repetition suppression. In doing so, we have

provided compelling and robust evidence to support the fatiguemechanism as the driving force behind repetition suppression in the context

of facial perception.
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Figure 3. Modified DCNN RDMs of layer 16 based on two different repetition suppression mechanisms
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Nevertheless, whether DCNNs represent the best brain-likemodels still needs investigation.While DCNNs are widely employed in neuro-

science, the field of computer vision has witnessed rapid advancements, resulting in the development of new ANNmodels that demonstrate

exceptional task performance and feature space effectiveness. Some novel models with architectures distinct from DCNNs, such as Gener-

ative Adversarial Networks (GANs),66 Vision Transformers (ViTs),67 Contrastive Language-Image Pretraining (CLIP),68 and Spiking Neural Net-

works (SNNs),69 may process visual embeddings differently than DCNNs. For instance, GANs perform end-to-end compression of image in-

formation, ViTs use attentionmechanisms for a more coarse-grained extraction of image features, CLIP incorporates contrastive learning with

linguistic information to attain multi-modal image representations, and SNNs simulate the temporal dynamics of neural firing, offering a

different paradigm for information processing. Recent studies provided unsupervised models70 and some other brain-inspired models71–73

may show more similar representations to human brains. However, we chose to use DCNNs for several reasons: (1) It is a model that shows

similar hierarchical processing to human visual cortex, extracting from lower-to higher-level visual information; (2) It allows us to easily manip-

ulate at the neuron-level; (3) Our primary focus is on the processing changes in visual information during the facial repetition suppression

changes, and we do not need to overly concern ourselves with the subtle differences between different visual extraction models. Evaluating

which model aligns most closely with the human brain is a complex challenge, and it remains a cutting-edge area of research that garners

attention from both computer scientists and neuroscientists. From the perspective of extracting representations from human EEG signals,

various EEG-based models directly trained on EEG signals74–76 might offer various schemes for feature extraction, rather than directly using

electrodes as features for subsequent RSA, as done in our current study.Whether and how these differentmodels could providemore insights

in not only repetition suppression but also more generally visual perception area is worth evaluating in the future. Our present study provides

a valuable framework for investigating neural mechanisms within the human brain through the use of reverse engineering and cross-

modal RSA.

In conclusion, this study represents an innovative foray into the realm of neuroscience using state-of-the-art methodologies that fuse AI

and neuroimaging techniques. Through the strategicmodification of AI model representations, we have endeavored to identify the condition

that most closely approximates the neural representations within the human brain. Our exploration of cross-modal representations not only

facilitates the unraveling of intricate neuroscience questions that are challenging to address through conventional noninvasive methods such

as fMRI or EEG experiments but also holds the potential to inspire advancements in AI models from a neuroscientific perspective. The insights

gleaned from this research are poised to be of significant importance for the future development of brain-inspired artificial intelligence. By

bridging the gap between AI and neuroscience, this work contributes to a deeper understanding of neural mechanisms and offers invaluable

contributions to the ongoing quest for brain-like intelligence.

Limitations of the study

Our study brings to light several areas that warrant further investigation and potential avenues for improvement. First, it is important to

consider whether there are alternative mechanisms underlying facial repetition suppression. While our study examined two primary models,

the Fatigue and Sharpeningmodels, it is conceivable that othermechanismsmay be at play. One limitation of pure DCNNmodels is their lack

of inherent temporal processing capability. Future research could explore the inclusion of timing process components, such as recurrent

structures,54,77 within DCNN models. This could lead to the discovery of additional mechanisms, including the possibility of a Facilitation

Figure 4. Representational comparison between brain activity and modified DCNN activations

(A) Layer-by-layer temporal valid similarity between EEG and modified DCNNs.

(B) Cross-temporal valid similarity between EEG and modified DCNNs on layer 16. The baseline of valid similarity is zero. Outlines indicate significant clusters

(cluster-based permutation test, p < 0.05).
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mechanism48 contributing to repetition suppression. Additionally, investigating repetition suppression mechanisms under different condi-

tions and for various types of facial information or tasks could provide valuable insights.

Second, our study has certain limitations stemming from the original experimental design of the open dataset we utilized. There exist

numerous nuanced facets of facial information that have not been thoroughly explored and deeply analyzed due to these limitations. These

unexplored dimensions include variations in hairstyle, skin color, viewpoint (e.g., upright or inverted faces), gender, race, and facial expres-

sions. These dimensions are critical as they can influence how faces are perceived and can potentially alter repetition suppression dynamics.

Furthermore, expanding our investigations to encompass the spatial aspects of neural information processing through fMRI and MEG data

could offer a more comprehensive perspective on the neural mechanisms underlying facial repetition suppression.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
� All original code has been deposited at https://osf.io/unhzm and is publicly available as of the date of publication. DOIs are listed in the

key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The EEG data used in our study are from a comprehensive multi-subject, multi-modal human neuroimaging dataset.78 Nineteen participants

were recruited from the MRC Cognition & Brain Sciences Unit, of which 8 were female, and 11 were male, with an age range 23-37 years. All

were Caucasian except for one Asian participant, who had spent many years in the UK. The study was approved by Cambridge University

Psychological Ethics Committee. Written informed consent was obtained from each participant prior to and following each phase of the

experiment. For the preprocessed EEG data, they excluded the EEG data from ‘‘sub-01’’ with unknown reasons (OpenNeuro Database:

https://openneuro.org/datasets/ds002718/). Thus, we applied the final eighteen participants’ EEG data they provide for our current study.

METHOD DETAILS

Data and experimental information

The data utilized in this study were sourced from an EEG dataset focusing on face perception, accessible on OpenNeuro (OpenNeuro Data-

base: https://openneuro.org/datasets/ds002718/). This dataset is a comprehensive multi-subject, multi-modal human neuroimaging data-

set.78 In our analysis, we specifically utilized EEG data from 18 participants, each consisting of 70 valid channels. All participants participated

in a face perception task (Figure 1A) that involved the presentation of 450 grayscale face stimuli. This set comprised 150 familiar faces, 150

unfamiliar faces, and 150 scrambled faces. Each scrambled face was generated from either the famous face or the non-famous face of the

same stimulus number. These were scrambled by taking the 2D-Fourier transform of the faces, permuting the phase information, and

then inverse-transforming back into the image space. To match the overall approximate shape and size of the original faces, the scrambled

images were finally cropped to a mask created by a combination of one familiar and one nonfamiliar face. Stimuli were projected onto a

screen approximately 1.3 m in front of the participant, subtending horizontal and vertical visual angles of approximately 3.66� and 5.38�

respectively. The photographs were presented against a black background, with a white fixation cross in the center. Participants were asked

to fix on the center of the screen and conducted a ‘more’ or ‘less symmetric’ judgement task (compare to the average based on a pre-task

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

EEG data of 18 human subjects Wakeman & Henson78 https://openneuro.org/datasets/ds002718/

Software and algorithms

Python 3.8 Python Software Foundation https://www.python.org/

EEGLAB toolbox Delorme & Makeig79 https://doi.org/10.1016/j.jneumeth.2003.10.009

NeuroRA toolbox Lu & Ku80 https://doi.org/10.3389/fninf.2020.563669

PyCTRSA toolbox Lu81 https://doi.org/10.5281/ZENODO.4273674

Other

All code used in this paper This paper https://osf.io/unhzm
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consisting of 23 separate photos) to ensure their attention. Each face stimulus was presented twice, with a 50% probability of seeing the same

face either immediately or after a delay of 5 to 15 trials. In total, it included 900 trials.

In our analysis, we labeled the first time a participant saw a specific face as ’new,’ the second time they saw the same face immediately as

’immediate (repetition),’ and the second time they saw the face after several trials as ’delayed (repetition).’ This resulted in a total of 9 con-

ditions (FN, 150 trials; FI, 75 trials; FD, 75 trials; UN, 150 trials; UI, 75 trials; UD, 75 trials; SN, 150 trials; SI, 75 trials; SD, 75 trials) derived from the

combination of 3 face conditions (F: familiar; U: unfamiliar; S: scrambled; 300 trials per condition) and 3 presentation conditions (N: new, 450

trials; I: immediate, 225 trials; D: delayed, 225 trials) (Figure 1B).

The EEG data employed in this study had already undergone partial preprocessing and had been resampled to 250 Hz as part of the data-

set. We applied band-pass filtering to retain data within the 0.1 to 30 Hz range. To identify and eliminate blinks and eye movements, we uti-

lized independent components analysis (ICA)82,83 using EEGLAB.79 Epochs of -500 to 1500ms from stimulus onset were created. No baseline

correction was applied.

Classification-based EEG decoding

Time-by-time EEG decoding

Each EEG trial corresponded to two distinct labels: one indicating the face condition (F, U, or S) and the other indicating the presentation

condition (N, I, or D). To investigate neural representations across different presentation conditions, we performed nine separate classifica-

tion-based decoding analyses, aiming to distinguish between them. These analyses encompassed the following condition pairs: FN vs. FI, UN

vs. UI, SN vs. SI, FN vs. FD, UN vs. UD, SN vs. SD, FI vs. FD, UI vs. UD, SI vs. SD.

For each of these classification-based decoding analyses, we employed Support Vector Machines (SVM) with a ‘linear’ kernel, a 1e-3 toler-

ance for stopping criterion, and the default regularization parameter (value=1). Our approach involved binarizing the trial labels for the two

conditions being compared. To reduce the dimensionality of the EEG data, we downsampled it by averaging every five time-points. The orig-

inal 500 time-points spanning from -500 to 1500ms were compressed into 100 time-points. This yielded a label vector for each participant,

containing labels for all trials, as well as a three-dimensional matrix with dimensions for time, trial, and channels, facilitating time-by-time

classification.

In our process, we randomized the order of trials and then averaged the data every five trials. The classifier was trained and tested sepa-

rately for each time-point. Specifically, we randomly selected 2/3 of the trials for training and used the remaining 1/3 for testing in each iter-

ation. This entire sequence of random shuffling, averaging, classification training, and testing was repeated 100 times for each time-point. If

there was an imbalance in the number of trials under two conditions, we applied the under-sampling approach. In each iteration, before

training the SVM, we identified the condition with the fewer samples and randomly selected the same samples from the condition with

the greater number of samples to ensure that both conditions have an equal number of samples to train the classifier. By adopting this un-

der-sampling strategy, wemade sure that the SVMwas trained on a balanced dataset for each time,mitigating the bias that could arise due to

the initial sample imbalance. We repeated these steps for each participant and for all nine classification condition pairs. To obtain more reli-

able time-by-time decoding accuracies, we averaged the classification accuracies across all iterations. This entire process was replicated for

the 18 participants in our study.

Cross-temporal EEG decoding

Additionally, we carried out cross-temporal EEG decoding, which represents an extension of the time-by-time decoding approach. The

fundamental idea behind cross-temporal decoding is to train the classifier on data at one specific time-point and then test it on data from

other time-points to assess whether the encoding patterns of the information of interest remain consistent across different times.

Similar to building upon the time-by-time decoding methodology described earlier, we trained the classifier on data for each time-point

and test this pre-trained classifier on data for all 100 time-points respectively. Thus, compared to time-by-time decoding, the only difference

of the cross-temporal EEG decoding we conduct here was to test the classifier on data for not only the identical time-point with the training

time-point but also every other time-point in the timecourse to see the temporal generalization of each time-point-based EEG classifier (see

Figure 1C for a graphical representation). Similar to the previous approach, we obtained the final decoding accuracies by averaging results

across 100 iterations. Consequently, each participant generated nine temporal generalization matrices for cross-temporal decoding, each

corresponding to one of the nine classification condition pairs. All the EEG decoding processes described above were executed using

the NeuroRA toolbox.80

DCNN models

In this study, we employed a DCNN model commonly utilized in the field of face recognition known as VGG-Face50 (Figure S1A). VGG-Face

was pretrained on a dataset consisting of 2622 unique identities, each with 1000 face images per person. Themodel exhibited impressive test

accuracies, achieving 97.27% on the IFW dataset and 92.8% on the YouTube Faces dataset. VGG-Face essentially followed the structure of a

VGG-16 model, comprising 13 convolutional layers and 3 fully connected layers. In our study, we utilized the VGG-Face model as a DCNN for

extracting facial features. For the sake of comparison, we also incorporated an additional VGG-16model that was left untrained and initialized

with random weights. This untrained VGG model served as a DCNN model that did not possess any learned facial features. In RSA section
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below, we introducedmore details about howwe extract features from these two VGGmodels, howwemeasured the representations of face

perception in these two models, and how we compared the representational similarity between human EEG and these two models.

RSA

EEG RDMs

Given that we had 3 face conditions and 3 presentation conditions, we utilized EEG classification-based decoding accuracy as the dissimilarity

metric to build a set of 9x9 neural Representational Dissimilarity Matrices (RDMs). For example, at a certain timepoint t, we assigned the de-

coding accuracy for the FD vs. SD conditions at timepoint t as the dissimilarity index between the FD condition and the SD condition in RDMas

timepoint t.

Additionally, we generated Cross-Temporal RDMs (CTRDMs) instead of traditional RDMs to conduct Cross-Temporal Representational

Similarity Analysis (CTRSA).81 In CTRSA, we incorporated cross-temporal decoding accuracy instead of traditional RSA. Here’s how it worked:

As illustrated in Figure 1C, we trained a Support Vector Machine (SVM) classifier on EEG data for the FD vs. SD conditions at timepoint tA
and then tested it on data for the FD vs. SD conditions at timepoint tB. The resulting test accuracy was employed as the dissimilarity index

between the FD condition at tA and the SD condition at tB in a tA -> tB CTRDM for a particular participant. Due to the directionality from

the training time to the testing time, the CTRDM for tA -> tB was distinct from the CTRDM for tB -> tA. The former was constructed using

data from tA for training and tB for testing, while the latter was constructed using data from tB for training and tA for testing. As we couldn’t

perform classification between two identical conditions, the diagonal values in the decoding-based CTRDMs were consistently set to 0. By

following this approach, we established a CTRDM for each pair of directed timepoints (from one timepoint to another) as described above.

Consequently, we generated a total of 100 (timepoints) x 100 (timepoints) CTRDMs based on cross-temporal EEG decoding. The EEG RDMs

section was executed using the NeuroRA toolbox.80

DCNN RDMs

To handle the substantial number of nodes in each layer of the VGG-16 model, we initially applied Principal Component Analysis (PCA) to

reduce the feature dimension. For instance, the second layer encompassed 64 112x112 feature maps, equating to a total of 802,816 nodes.

For each image fed into the VGG-16 model, the layer 2 activation could be represented as a 1x802,816 vector. We conducted PCA on these

vectors and organized the principal components in descending order of their contribution rates. We retained principal components that

collectively contributed to over 95% of the variance, discarding the rest. This process effectively reduced the feature dimension of each layer.

As depicted in Figure S1B, the dimensionality of layer 2 was trimmed to 307 after PCA. In a similarmanner, we performeddimension reduction

for all layers in both the VGG-Face and untrained VGG models. This dimension reduction step was implemented using the Scikit-learn

toolkit.84

To process the images, we fed each one into both the VGG-Face and untrained VGGmodels, extracting activation vectors for every even

layer (e.g., layer 2, 4,., and layer 16) after dimension reduction. This resulted in 450 activation vectors for each layer, corresponding to the 450

images in our dataset. Tomanage the computational load, we calculated the Pearson correlation coefficient (r) between the activation vectors

for any two images within each layer. We then used 1 minus the correlation coefficient (1 - r) as the dissimilarity index. For a given layer, we

constructed a 450x450 Representational Dissimilarity Matrix (RDM) in the order of 150 familiar faces, 150 unfamiliar faces, and 150 scrambled

faces. This procedure allowed us to obtain DCNNRDMs for all even layers in both the VGG-Face and untrained VGGmodels. The calculation

of DCNN RDMs was carried out using the NeuroRA toolbox.80

Repetition suppression simulations in DCNN

To investigate the neural mechanism of facial repetition suppression using "reverse engineering," we developed two possible neuronal-level

models: the Fatiguemodel and the Sharpeningmodel. Thesemodels were designed to simulate how the neural responses in a deep convolu-

tional neural network (DCNN) change under facial repetition suppression conditions.We set the activation vector of a face imagep at layer i of

a DCNN (before PCA) as A = ða1;a2;..;anÞ, where the activation values were ordered in descending order (a1 >a2 >a3>.>am� 1 >am =

am+1 = . = an = 0), which meant that there were n-m nodes with nonzero activation value and m nodes with activation value of zero).

For Fatigue model, we assumed that the activation of the node with higher response to face stimulus was weaken under repetition sup-

pression condition. The activation of the node with low response remained unchanged, but the node with higher activation had more atten-

uations. Thus, if the face image p was viewed repeatedly, the new activation vector obtained based on Fatigue model would be AF =

ðaF1; aF2;..; aFnÞ, and its internal activations were:

aFi =

8>>><
>>>:

�
1 � a+

ði� 1Þa
bn

�
$ai ð1% i%bnÞ

ai ðbn< i%nÞ
(Equation 1)

where awas themaximum fatigue coefficient, and bwas the proportion of the nodes that would be attenuated. Thus, the first bn nodes would

be attenuated when the same face image was viewed repeatedly, and the nodes from the strongest one to the bn th one would be weakened

in proportion from a to a=ðbnÞ.
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For Sharpening model, we assumed that the nodes with lower response to face stimulus were no longer activated under repetition sup-

pression condition, and the nodes with higher response kept same activations. Thus, the new activation vector obtained based on Sharpening

model would be AS = ðaS1; aS2;..; aSnÞ, and its internal activations were:

aSi =

8<
:

ai ð1% i< ð1 � qÞnÞ

0 ðð1 � qÞn% i%nÞ
(Equation 2)

where qwas the proportion of the nodes whichwould be not activated. Thus, the last qn nodes’ activations would become zerowhen the same

face image was viewed repeatedly.

Figure 1E is a schematic diagram of how these two repetition suppressionmodels simulated in DCNNs. Here, Figure 1E shows the original

activations of 30 active nodes and the activations under repetition suppression condition based on Fatiguemodel (a= 0.5, b= 0.5) and Sharp-

eningmodel (q= 0.5) respectively. For all 450 images, we input them into both VGG-Face and untrained VGG respectively, and then we calcu-

lated activation vectors of different layers based on different simulation models of repetition suppression.

Modified DCNN RDMs

Based on the above two facial repetition suppressionmodels, we setmodel parameters corresponding to three types of face stimuli here: For

Fatiguemodel, awas set to 0.9, whichmeant that the first 90% nodes with nonzero activation value were set as the nodes with high activation.

And we set the maximum fatigue coefficient b to 0.5 for immediate repetition condition and 0.05 for delayed repetition condition. For Sharp-

eningmodel, qwas set to 0.5 for immediate repetition condition and 0.05 for delayed repetition condition. Therefore, three activation vectors

corresponding to new, immediate, and delayed conditions were calculated from the activation in each layer in DCNNs of each image based

on each repetition suppressionmodel. Then, we input these vectors into PCA to get feature vectors after dimension reduction. For each even

layer, face image and repetition suppression model, we calculated the dissimilarity (1-Pearson correlation coefficient) between each pair of

two feature vectors and got two 135031350 RDMs for VGG-Face and untrained VGG.

RSA between EEG and DCNNs

For VGG-Face and untrained VGG, 8 135031350 RDMs corresponding to 8 even layers were obtained. For EEG, each participant corre-

sponded 100 time-by-time 939 RDMs and 1003100 cross-temporal 939 CTRDMs. To establish the connection between DCNNs and human

brains, we averaged the cells under 9 conditions respectively (FN, FI, FD, UN, UI, UD, SN, SI, SD) in 135031350 RDMs to get compressed 939

DCNNRDMs. Tomeasure the representational similarity between neural (CT)RDMs andDCNNRDMs, we first extract all cells of the top half of

the diagonal in each RDM to get a corresponding vector which including 36 values, thenwe calculated the Spearman correlation coefficient as

the similarity between every CT(RDM) and every DCNN layer RDMs. To obtain the similarity between the representation of face information

that a DCNN learned for face recognition and human brains, we calculated the valid representational similarity Svalid below:

Svalid = SVGG� Face � SUntrained VGG (Equation 3)

where SVGG�Face was the representational similarity between VGG-Face and neural activity, and SUntrained VGG was the representational sim-

ilarity between untrained VGG and neural activity. Here, we applied untrained VGG’s representations as a baseline that there was not enough

face-specific information and calculated valid similarities for two repetition suppression models, respectively. To get face-specific repetition

suppression mechanism, the pre-train VGG-Face trained on face recognition task would have stronger similarity with human brains than un-

trained VGG.

QUANTIFICATION AND STATISTICAL ANALYSIS

For the classification-based decoding results, we assessed whether neural representations in the brain encoded information at specific time-

points. We assumed that if this was the case, it would be possible to linearly classify between two conditions, resulting in decoding accuracy

greater than chance, which is 50%.

Regarding the RSA results, we aimed to determinewhether the valid similarity between conditions was significantly greater than zero. If the

valid similarity values were either zero or less than zero, it would suggest that the corresponding repetition suppression mechanism was not

specific to face information.

To compare the decoding accuracy to chance and assess whether valid similarity differed significantly from zero at each time-point, while

also controlling for multiple comparisons, we employed cluster-based permutation tests. Here’s a step-by-step outline of the procedure: (1)

Calculate t-values for each time-point and identify significant clusters; (2) Compute the clustering statistic as the sum of t-values within each

cluster; (3) Perform 5000 permutations to establish the maximum permutation cluster statistic; (4)Assign p-values to each cluster in the actual

decoding accuracies or similarities dataset by comparing their cluster statistic to the permutation distribution. This approach helps us deter-

mine the statistical significance of the observed decoding accuracy and similarity values while accounting for multiple comparisons.
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