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such as animacy, spikiness, and real-world size (Bao et al. 
2020; Cichy et al. 2014; Coggan and Tong 2023; Khaligh-
Razavi et al. 2018; Konkle and Caramazza 2013; Lu and 
Golomb 2023b; Yargholi and de Beeck 2023). Additionally, 
some studies that directly compare CNNs with human brain 
representations have found that DCNNs exhibit hierarchi-
cal visual processing similar to the human visual system, 
both temporally and spatially (Cichy et al. 2016; Güçlü and 
van Gerven 2015; Kietzmann et al. 2019; Lu and Golomb 
2023a; Yamins et al. 2014). However, the presence of sig-
nificant representational similarities does not imply that the 
two systems are highly alike. Both representational simi-
larity analysis and regression-based measurements indicate 
that there remain substantial differences between DCNNs 
and the human brain in visual perception.

Simply expanding the training dataset or increasing the 
number of layers within DCNNs cannot enhance model-
brain alignment (Schrimpf et al. 2020). Some studies 
have attempted to modify the model’s architecture by 
constructing dual-way pathways models (Bai et al. 2017; 
Choi et al. 2023; Han and Sereno 2022, 2023; Sun et al. 

Introduction

Deep convolutional neural networks (DCNNs) in computer 
vision have rapidly advanced, achieving and even surpass-
ing human performance in object recognition (Lecun et al. 
2015). These advancements not only drive the development 
of artificial intelligence (AI) but have also garnered sig-
nificant interest from researchers in cognitive neuroscience. 
Numerous studies have observed that DCNNs not only 
internally represent basic visual features, such as orienta-
tion, position, shape, and texture (Yosinski et al. 2015; Zeiler 
and Fergus 2014), but also capture important object attri-
butes found in primate and human neuroimaging studies, 
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Abstract
Deep convolutional neural networks (DCNNs) have demonstrated excellent performance in object recognition and have 
been found to share some similarities with brain visual processing. However, the substantial gap between DCNNs and 
human visual perception still exists. Functional magnetic resonance imaging (fMRI) as a widely used technique in cogni-
tive neuroscience can record neural activation in the human visual cortex during the process of visual perception. Can 
we teach DCNNs human fMRI signals to achieve a more brain-like model? To answer this question, this study proposed 
ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a 
multi-layer encoding-based alignment framework. This framework has been shown to effectively enable the model to 
learn human brain representations. The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain 
than both CORnet and the control model in within- and across-subject as well as within- and across-modality model-brain 
(fMRI and EEG) alignment evaluations. Additionally, we conducted an in-depth analysis to investigate how the internal 
representations of ReAlnet-fMRI differ from CORnet in encoding various object dimensions. These findings provide the 
possibility of enhancing the brain-likeness of visual models by integrating human neural data, helping to bridge the gap 
between computer vision and visual neuroscience.
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2017), adding feedback pathways (Konkle and Alvarez 
2023), incorporating topographic constraints (Finzi et al. 
2022; Lee et al. 2020; Lu et al. 2023; Margalit et al. 2023) 
to simulate how the brain works. A recent study has pro-
posed a more brain-like recurrent DCNN called CORnet 
(Kubilius et al. 2018, 2019). Although CORnet includes 
only four convolutional layers, it achieves higher similar-
ity to the brain than most other vision models with many 
more layers (Kubilius et al. 2019), as measured by Brain-
Score (Schrimpf et al. 2020), a platform for evaluating 
the similarity between models and primate brains. How-
ever, despite CORnet being considered a more brain-like 
visual system model, it is still solely trained on images 
and has not been truly optimized using neural data. This 
raises the question: can we further refine CORnet, which 
was originally trained only on images, by using neural 
data to make it more brain-like?

To address this question, researchers have developed 
two main approaches to optimize DCNNs using neural data 
by refining the training process to bridge them closer to 
brain representations. One approach is the similarity-based 
method, which optimizes a similarity loss to make the mod-
el’s representations more similar to neural activity (Dapello 
et al. 2023; Federer et al. 2020; Li et al. 2019; Pirlot et al. 
2022). This method has been used in studies to optimize 
DCNNs using neural activity from the mouse V1, or mon-
key V1 or IT. The other approach is the encoding-based 
method, which involves training DCNNs with an additional 
task to generate real brain neural activity (Safarani et al. 
2021; Shao et al. 2024), thus enabling the model to learn 
more brain-like internal representations. This method not 
only utilizes invasive neural activity from monkeys but also 
has recently been applied using non-invasive fMRI signals 
from humans to optimize ResNet. However, these studies 
have some limitations. Firstly, they often align a specific 
model layer with a specific brain region’s neural activity, 
yet the correspondence between model layers and differ-
ent brain regions is neither one-to-one nor well-understood. 
Secondly, these studies tend to focus more on whether the 
optimized model exhibits higher robustness rather than on 
model-brain alignment, which is the focus of our research.

A recent study proposed a novel multi-layer encod-
ing alignment framework to effectively optimize CORnet 
using human EEG signals (Lu et al. 2024). This human 
EEG-optimized model, called ReAlnet, was found to be 
significantly more similar to the human brain in terms 
of not only EEG but also fMRI and behavior. This may 
be one of the most effective methods for using neural 
data to optimize models, as it does not require specifying 
direct correspondences between different model layers 
and brain processing stages. While this demonstrates the 
robustness of the framework with EEG data, it remains 

unknown whether the same framework can be effectively 
applied to other neural modalities such as fMRI. fMRI 
and EEG differ fundamentally: EEG captures fast tem-
poral dynamics of neural activity, while fMRI provides 
spatially resolved but temporally coarse signals. Addi-
tionally, fMRI datasets are often smaller and higher-
dimensional than EEG datasets, introducing unique 
challenges for model training. Successfully extending 
this framework to fMRI would validate its flexibility 
and highlight its generalizability to diverse neural data 
types. Therefore, the key question of this study is: Can 
we enhancing model-brain alignment by extending this 
framework to let CORnet learn human visual process-
ing from fMRI data without specifying correspondences 
between its internal convolutional layers and different 
visual regions of the human brain?

In this study, we adapted CORnet to learn human 
fMRI representations using a modified multi-layer 
encoding alignment framework and proposed this fMRI-
optimized model as ReAlnet-fMRI. We trained three per-
sonalized ReAlnet-fMRI models based on fMRI signals 
from three individual human subjects when they viewed 
natural images. We evaluated the model-brain align-
ment using within- and cross-subject within-modality 
fMRI data, as well as cross-subject across-modality EEG 
data. All evaluations suggest that ReAlnet-fMRIs exhibit 
enhanced model-brain alignment. Additionally, further 
internal representational analysis of both the purely 
image-trained CORnet and our fMRI-aligned ReAlnet-
fMRIs revealed representational differences between 
these networks. Our study offers notable contributions 
to both cognitive neuroscience and artificial intelligence 
fields: (1) Our image-to-fMRI encoding-based alignment 
framework can simultaneously optimize multiple layers 
of the deep convolutional neural network without speci-
fying correspondences between its internal convolutional 
layers and different visual regions of the human brain. (2) 
Our fMRI-optimized ReAlnet-fMRIs effectively learned 
human brain representations and exhibited substantial 
improvements in aligning with human brain representa-
tions across different subjects and neuroimaging modali-
ties (human fMRI and EEG). (3) We provided not only 
comprehensive evaluations on model-brain alignment 
but also detailed analyses of models’ internal representa-
tions to help us understand how the internal representa-
tions of ReAlnet-fMRI differ from CORnet trained purely 
on images.
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Methods

Here we first introduce the datasets we used in our study, 
including two fMRI datasets and one EEG dataset. Then, 
we describe the basic CORnet architecture and the train-
ing process of how we combined human fMRI signals to 
optimize CORnet to achieve our brain-aligned ReAlnet-
fMRI models. Finally, we introduce the evaluation meth-
ods for measuring representational similarity between 
models and human brains and behaviors, and also the 
details of internal representational analysis on models we 
conducted to explore what ReAlnet-fMRI learned from 
human fMRI representations.

Human neuroimaging datasets

fMRI dataset for model training  The fMRI data originates 
from (Shen et al. 2019). This Shen fMRI dataset recorded 
human brain fMRI signals from three subjects while they 
focused on the center of the screen viewing natural images 
from ImageNet. We applied the training set from Shen 
fMRI dataset, which comprises fMRI signals of each sub-
ject viewing 1,200 images (from 150 object categories, 8 
images per category) with each image being viewed 5 times 
and averaged the fMRI signals across the repeated trials to 
obtain more stable brain activity for each image observation 
to train our ReAlnet-fMRIs (1,200 samples for training).
Here, we selected the voxels from the entire visual cortex 
to obtain fMRI signals. The visual cortex (VC) was defined 
as the combination of early visual areas (V1, V2, V3, and 
V4) and the higher visual cortex (HVC), a contiguous 
region covering LOC, FFA, and PPA, as delineated based 
on functional localizer data (Shen et al. 2019). V1–V4 were 
identified through retinotopy experiments, while the HVC 
was identified using voxels showing significantly higher 
activation for intact object, face, or scene images compared 
to scrambled images. And we applied principal component 
analysis (PCA) based on individual training data to reduce 
the total number of voxels in the visual cortex to 1,024 
feature dimensions. Consequently, the training data corre-
sponding to each human subject consisted of 1,200 samples 
× 1,024 features.

fMRI dataset for model test (within-modality & within-sub-
ject)  To evaluate whether ReAlnet-fMRIs shows higher 
similarity to human fMRI representations, we applied the 
test set from Shen fMRI dataset to test the within-modal-
ity and within-subject model-fMRI similarity. This test 
set comprises fMRI signals of same three subjects view-
ing 50 images (from 50 object categories from ImageNet 
but different from 150 training categories), 40 artificial 

shape images, and 10 alphabetical letter images with each 
image being viewed 24, 20, and 12 times respectively.

Similar to what we did for the training set, we averaged 
the fMRI signals across the repeated trials to obtain more 
stable brain activity for each image observation. For the 
testing, we extracted signals from five regions-of-interest 
(ROIs) for subsequent comparison of model-fMRI simi-
larity: V1, V2, V3, V4, and the lateral occipital complex 
(LOC). The inclusion of the LOC region is motivated by 
its role as the human brain’s counterpart to the interior 
temporal cortex (IT) in non-human primates, a key region 
involved in high-level object recognition. This correspon-
dence has been established in previous studies, which sug-
gest that LOC in humans performs similar functions to IT in 
monkeys, particularly in processing high-level semantic and 
categorical object features (Grill-Spector et al. 2001; Khosla 
et al. 2022). In addition, V1-V4 were included to evaluate 
the model’s ability to capture low- to mid-level visual repre-
sentations, providing a complete hierarchical view of visual 
processing from early visual areas to high-level regions 
like LOC. This multi-regional comparison, including LOC, 
allows us to assess the extent to which ReAlnet-fMRI aligns 
with both lower- and higher-order visual representations in 
humans.

fMRI dataset for model test (within-modality & across-
subject)  Although our ReAlnet-fMRIs were trained 
on individual fMRI signals, we also would like to test 
whether these models learn more general brain repre-
sentations across individuals than the original purely 
image-trained CORnet. Thus we selected another fMRI 
dataset (Horikawa and Kamitani 2017), Horikawa fMRI 
dataset, which included fMRI signals from five differ-
ent subjects viewing natural images. Here, we used the 
test set of Horikawa fMRI dataset to evaluate the within-
modality but across-subject model-fMRI similarity. This 
test set comprises fMRI signals of five subjects viewing 
50 images (as same as images used in Shen fMRI data-
set’s test set) with each image being repeated 35 times. 
We also averaged the repeated trials and extracted signals 
from V1, V2, V3, V4, and LOC to calculate the model-
fMRI similarity.

EEG dataset for model test (across-modality & across-sub-
ject)  To further confirm that our ReAlnet-fMRIs learn more 
general human brain representations instead of just human 
fMRI representations, we need to apply across-modality 
human neuroimaging data to conduct the model-brain align-
ment evaluation. Here we obtained human EEG data from 
an EEG open dataset, THINGS EEG2 dataset (Gifford et al. 
2022), including EEG data from 10 healthy human subjects 
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performs a 7 × 7 convolution with a stride of 2, followed 
by a 3 × 3 max pooling with a stride of 2, and another 3 × 3 
convolution. Layer V2, V4, and IT each perform two 1 × 1 
convolutions, a bottleneck-style 3 × 3 convolution with a 
stride of 2, and a 1 × 1 convolution. Apart from the initial 
Layer V1, the other three visual layers include recurrent 
connections, allowing outputs of a certain layer to be passed 
through the same layer several times (twice in Layer V2 and 
IT, and four times in Layer V4).

Image-to-fMRI encoding-based alignment framework  In 
addition to the original CORnet structure, we have added 
an fMRI generation module designed to construct an 
image-to-fMRI encoding model for generating human 
fMRI signals from human visual cortex (Fig. 1A). Each 
visual layer is connected to a nonlinear N × 128 layer-
encoder (Enc-V1, Enc-V2, Enc-V4, and Enc-IT cor-
respond to Layer V1, V2, V4, and IT) that processes 
through a fully connected network with a ReLU activa-
tion. These four layer-encoders are then directly concat-
enated to form an N × 512 Multi-Layer Visual Encoder, 
which is subsequently connected to an N × 1024 fMRI 
encoder through a linear layer to generate the predicted 
fMRI signals. Here N is the batch size. Therefore, we aim 
for ReAlnet-fMRI to not only perform the object clas-
sification task but also to generate human fMRI signals 
through the fMRI generation module to learn human 
fMRI representations when the human subject views the 
certain image. During this process of predicting huamn 

in a rapid serial visual presentation (RSVP) paradigm. 
Stimuli were images sized 500 × 500 pixels from THINGS 
dataset (Hebart et al. 2019), which consists of images of 
objects on a natural background from 1854 different object 
concepts. We applied the test set in THINGS EEG2 data-
set to evaluate the across-modality and also across-subject 
model-EEG similarity. In this test set, each subject com-
pleted 16,000 trials with 200 images from 200 object con-
cepts and 80 repeated trials per images. Subjects viewed one 
image per trial (100ms).

EEG data were collected using a 64-channel EASYCAP 
and a BrainVision actiCHamp amplifier. We used already 
pre-processed data from 17 channels (O1, Oz, O2, PO7, 
PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2) overlying 
occipital and parietal cortex. We re-epoched EEG data 
ranging from stimulus onset to 200ms after onset with a 
sample frequency of 100 Hz. Thus, the shape of our EEG 
data matrix for each trial is 17 channels × 20 time points. 
Similar to fMRI, we averaged all the repeated trials for 
each image to obtain more stable EEG signals.

Model architecture and training

Basic architecture of ReAlnet-fMRI  We have chosen the 
state-of-the-art CORnet-S model (Kubilius et al. 2018, 
2019) as the foundational architecture for ReAlnet-fMRI. 
Both CORnet and ReAlnet consist of four visual layers (V1, 
V2, V4, and IT) and a category decoder layer. Layer V1 

Fig. 1  Human fMRI-optimized ReAlnet-fMRI as a more human 
brain-like vision model. (A) An overview of ReAlnet-fMRI alignment 
framework. Adding an additional multi-layer encoder to an ImageNet 
pre-trained CORnet-S, the outputs contain the category classification 
results and the generated fMRI signals with two losses, a classification 
loss and a generation loss. (B) Within-subject representational simi-

larity between models (CORnet, Control, and ReAlnet-fMRIs) and 
human fMRI on natural images. (C) Similarity Improvement ratio of 
within-subject model-fMRI similarity on natural images of ReAlnet-
fMRIs compared to other two models. Each circle dot indicates an 
individual ReAlnet-fMRI. Different shades of grey lines correspond to 
three different subjects in Shen fMRI dataset
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computed dissimilarities of 256 pairs for each gradient 
step.

Additionally, the absence of correct ImageNet labels for 
many images in Shen fMRI dataset should indeed decrease 
the category classification performance on ImageNet. To 
better control, we trained a control model with β = 0, called 
Control. We tested the classification accuracy on ImageNet 
and behavior similarity on Brain-Score (See Model-Brain 
Similarity Measurement section) of CORnet, Control, and 
ReAlnet-fMRIs at different β values (Figure S1). Although 
the classification accuracy of ReAlnet-fMRIs decreased 
compared with CORnet and showed a slight tendency to 
decrease as β increased, it hardly changed compared with 
Control. Also, there was no significant different on behav-
ioral similarity between CORnet and ReAlnet-fMRIs when 
beta is larger than 10, and all ReAlnet-fMRIs showed 
higher behavioral similarity than Control. In the main text, 
we show the results of ReAlnet-fMRIs with β = 40 (See the 
results of ReAlnet-fMRIs with β = 10, 20, 30, 50 in Supple-
mentary Figure S2, Figure S3, Figure S4, Figure S5, Fig-
ure S6, Figure S7, Figure S8, Figure S9, Figure S10, Figure 
S11, Figure S12, Figure S13).

Model-brain similarity measurement

Representational similarity analysis (RSA) (Kriegeskorte 
et al. 2008) is used for representational comparisons 
between models and human brain activity. First, we com-
puted representational dissimilarity matrices (RDMs) for 
models and human fMRI or EEG signals. Then, we cal-
culated Spearman correlation coefficients between model 
RDMs and human neural RDMs. All RSA analyses were 
implemented based on NeuroRA toolbox (Lu and Ku 
2020).

Model-fMRI similarity  To evaluate the within-subject 
model-fMRI similarity, the shape of each RDM (natu-
ral images, artificial shape images, or alphabetical letter 
images) is 50 × 50, 40 × 40, or 10 × 10 in Shen fMRI dataset 
test set. For fMRI RDMs, we calculated 1 minus Pearson 
correlation coefficient between voxel-wise activation pat-
terns corresponding to any two images as the dissimilarity 
index in the RDM for each ROI and each subject. For model 
RDMs, we input 50 natural images, 40 artificial shape 
images, and 10 alphabetical letter images respectively into 
each model and obtained latent features from each visual 
layer. Then, we constructed each layer’s RDM by calcu-
lating the dissimilarity using 1 minus Pearson correlation 
coefficient between flattened vectors of latent features cor-
responding to any two images. To compare the representa-
tions, we calculated the Spearman correlation coefficient as 

fMRI activity, ReAlnet-fMRI’s visual layers are poised 
to effectively extract features more aligned with neural 
representations.

Similar to the study of ReAlnet (Lu et al. 2024), the training 
loss LA of this modified alignment framework consists of a 
classification loss and a generation loss with a parameter β 
that determines the relative weighting:

LA = LC + β · LG

LC  represents the standard categorical cross entropy loss 
for model predictions on ImageNet labels:

LC = −
∑

N
i=1yilog (pi)

Here, yi represents the i-th image, and pi represents the 
probability that model predicts the i-th image belongs to 
class i out of 1000 categories. However, some images in 
Shen fMRI dataset were not included in 1,000 categories 
in ImageNet 1,000 category version. Therefore, we adopt 
the same strategy as in previous studies (Dapello et al. 
2023; Lu et al. 2024), using the labels obtained from the 
ImageNet pre-trained CORnet without neural alignment as 
the true labels to stabilize the classification performance of 
ReAlnet-fMRI.

LG represents the generation loss including a mean 
squared error (MSE) loss and a contrastive loss between 
the generated and real fMRI signals. This contrastive loss 
is calculated based on the dissimilarity (1 minus Spearman 
correlation coefficient) between generated and real signals, 
aiming to bring the generated signals from the same image 
(positive pairs) closer to the corresponding real human 
fMRI signals and make the generated signals from different 
images (negative pairs) more distinct. LG is calculated as 
followed:

LG = 1
N

∑
N
i=1

(
Si − Ŝi

)2
+ 1 − 1

N

∑
N
i=1ρ

(
Si, Ŝi

)

+ 1
N(N − 1)

∑
N
i=1

∑
N
j=1, j ̸= iρ

(
Si, Ŝj

)

Here, Si and Ŝi represent the generated and real fMRI sig-
nals corresponding to the i-th image.

Training procedures  We trained 3 individual ReAlnet-
fMRI independently based on 3 human subjects’ fMRI 
data in Shen fMRI dataset independently. Each network 
was trained to minimize the alignment loss including 
both classification and generation losses with a static 
loss weight β of 10, 20, 30, 40 or 50 and a static training 
rate of 0.00002 for 5 epochs using the Adam optimizer. 
We used a batch size of 16, meaning the contrastive loss 
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captured most explained variance in similarity judge-
ments and produced these 49 highly reproducible and 
meaningful object dimensions that reflect various con-
ceptual and perceptual properties of all objects. Thus, 
these 49 object dimensions serve as the core dimensions 
in object space. For more detailed, please refer to the 
original THINGS paper (Hebart et al. 2020).

Here, our analysis is based on the 200 images in the 
test set of THINGS EEG2 dataset. These 200 images are 
involved in THINGS image dataset (but not involved in the 
model’s training in our study), and we could directly obtain 
the feature weights along 49 dimensions for all 200 images 
from the THINGS dataset website (https://osf.io/jum2f/). 
We employed an RDM-based partial Spearman correlation 
method for the analysis. Specifically, we first computed the 
RDM for the IT layer (which contained more higher-level 
information) of each model and 49 feature RDMs based on 
200 images (calculating the absolute value differences in 
feature encoding strength on the same dimension between 
every two images as dissimilarity). Then, we computed the 
partial correlation between the model RDM and each fea-
ture RDM, regressing out the other 48 feature RDMs, and 
calculated the square of the partial correlation coefficient as 
the explained variance of the model by that object dimen-
sion. We also conducted the same analysis for the V1-V4 
layers, and the corresponding results are shown in Figure 
S14.

Results

Within-modality & within-subject model-fMRI 
similarity

First, we would like to confirm that training the model 
using fMRI signals of humans viewing natural images can 
make the model’s representations more similar to human 
fMRI representation at the within-subject level. Based on 
the analysis of the 50 natural images in the test set from 
Shen fMRI dataset, we calculated the similarity between (1) 
fMRI RDMs based on 5 different ROIs and RDMs of COR-
net based on 4 layers, (2) their fMRI RDMs and RDMs of 
Control, (3) their fMRI RDMs and RDMs of the subject-
matched ReAlnet-fMRI. The results showed that ReAlnet-
fMRIs were more similar to human fMRI representations 
across various visual brain regions compared to both COR-
net and Control (Fig. 1B).

We also analyzed the improvement ratio of similarity 
(compared to CORnet: (ReAlnet-fMRI - CORnet)/CORnet; 
compared to Control: (ReAlnet-fMRI - Control)/Control) 
(Fig. 1C). The average improvement ratio exceeded 10%, 
with the highest improvement ratio reaching 43%. Although 

the similarity index between layer-by-layer model RDMs 
and neural fMRI RDMs corresponding to different ROIs, 
assigning the final similarity for a certain brain region as the 
highest similarity result across model layers due to the lack 
of a clear correspondence between different model layers 
and brain regions. Similarity, to evaluate the across-subject 
model-fMRI similarity, the only difference was that we 
obtained 50 × 50 fMRI RDMs corresponding to 5 ROIs for 
each subject in Horikawa fMRI dataset test set.

Model-EEG similarity  To evaluate the across-modality 
and across-subject model-EEG similarity, the shape of 
each RDM is 200 × 200, corresponding to 200 images in 
THINGS EEG2 test set. For EEG RDMs, we applied time-
point-by-timepoint classification-based EEG decoding and 
used decoding accuracy between two image conditions as 
the dissimilarity index to construct EEG RDM for each 
timepoint and each subject. For model RDMs, we input 
200 images into each model and obtained the final layer-
by-layer model RDMs. To compare the representational 
similarity temporally, we calculated the Spearman correla-
tion coefficient between layer-by-layer model RDMs and 
timepoint-by-timepoint neural EEG RDMs.

Model-behavior similarity  We measured the model-behav-
ior similarity based on Brain-Score, which is a frame-
work evaluating how similar the model is to the primate 
visual system (Schrimpf et al. 2020). Here, we applied 
the behavioral benchmarks (including “Rajalingham-
2018public-i2n” assessing the ability of recognizing core 
objects from visual images, even with various changes 
in position, size, viewing angle, and background of the 
objects (Rajalingham et al. 2018) and “Geirhos2021-
error_consistency” measuring the similarity of errors 
made by ANN and human (Geirhos et al. 2021) from 
Brain-Score platform. We obtained the behavior similar-
ity of both CORnet and ReAlnet-fMRI with different β 
values. For more detailed information about the behav-
ioral benchmarks in Brain-Score, please refer to the orig-
inal papers (Geirhos et al. 2021; Rajalingham et al. 2018; 
Schrimpf et al. 2020).

Model internal representational analysis

To assess the model’s encoding of different object fea-
tures and explore which object dimension the fMRI-opti-
mized ReAlnet-fMRI encodes more strongly or weakly 
compared to CORnet, we applied 49 object space dimen-
sions from THINGS (Hebart et al. 2020). These dimen-
sions were derived from large scale human similarity 
judgments for real-world images of 1854 object concepts 
by using a data-driven computational model. The model 
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demonstrate consistent alignment improvement in 
regions such as V1-V4, which process the low- and mid-
level features more prevalent in these stimuli.

It is important to note that the alignment improvements 
of ReAlnet-fMRIs are strongly influenced by the type of 
stimuli. For images rich in semantic content, such as natural 
images, substantial improvements are observed from low- 
to high-level visual regions. In contrast, for stimuli domi-
nated by low-level features, the improvements are largely 
restricted to regions specialized in low- and mid-level 
processing.

Within-modality & across-subject model-fMRI 
similarity

To further confirm that our individually fMRI-optimized 
ReAlnet-fMRIs learn not only individual-specific but also 
more general brain representations across individuals, com-
pared to the original purely image-trained CORnet, we con-
ducted the across-subject model-fMRI similarity analysis 
on the test set from Horikawa fMRI dataset. The results 
were consistent with the within-subject (subject-matched) 
similarity results from Shen fMRI dataset above, showing 
that three ReAlnet-fMRI models exhibited higher similarity 
to the fMRI representations of all five subjects in Horikawa 
fMRI dataset (Fig.  3A). The lower representational simi-
larity of ReAlnet-fMRI compared to CORnet in the LOC 

there were 1–2 instances where ReAlnet-fMRIs exhibited 
lower similarity to human V4 and LOC representations com-
pared to CORnet, they were still higher than Control. These 
few instances of negative improvement are likely due to the 
lack of ImageNet category labels for some images during 
the training of ReAlnet-fMRI. Nonetheless, our image-to-
fMRI encoding-based alignment framework demonstrated 
a significant capability to enhance model-fMRI alignment 
that ReAlnet-fMRIs show significantly higher alignment 
compared to CORnet and Control.

Furthermore, can ReAlnet-fMRI, which is trained 
to learn fMRI representations corresponding to natural 
images, also learn brain representations when humans 
view other categories of images? To investigate this, we 
selected two other parts of data from the test set of Shen 
fMRI dataset, which includes 40 artificial shape images 
and 10 alphabetical letter images. The results showed 
that for simple shape and letter images, ReAlnet-fMRIs 
still exhibited higher similarity to human brain represen-
tations (Fig.  2A-B). In V4 and LOC brain regions, we 
observed instances where ReAlnet-fMRIs had lower sim-
ilarity compared to CORnet and/or Control. This result is 
primarily driven by the characteristics of the image type. 
For stimuli such as artificial shapes and letters, which 
lack rich semantic content, it is inherently challenging to 
improve alignment in regions like LOC that specialize in 
high-level semantic processing. Instead, ReAlnet-fMRIs 

Fig. 2  Within-subject model-fMRI similarity and similarity improvement ratio on (A) artificial shape images and (B) alphabetical letter images. 
Each circle dot indicates an individual ReAlnet-fMRI. Different shades of grey lines correspond to three different subjects in Shen fMRI dataset
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Across-modality & across-subject model-EEG 
similarity

Although we observed that ReAlnet-fMRIs exhibit 
higher similarity to human fMRI representations, it is 
important to note that ReAlnet-fMRIs are trained based 
on fMRI signals. This raises the question: are ReAnet-
fMRIs learning just the fMRI representations, or are they 
capturing broader human brain representations in visual 
perception? If it is the latter, we should be able to observe 
that ReAlnet-fMRIs also show higher similarity to 
across-modality human EEG representations compared 
to CORnet. To test this, we conducted an across-modality 
and across subject model-EEG similarity analysis using 
the EEG data from 10 subjects in the test set of THINGS 
EEG2 dataset. The results showed that ReAlnet-fMRIs 
have significantly higher similarity to human EEG neural 
dynamics across all four visual layers than both CORnet 
and Control without human neural alignment (Fig. 4A). 

region is likely due to the performance limitations of the 
ReAlnet-fMRI model in encoding high-level visual fea-
tures. However, it is worth noting that ReAlnet-fMRI still 
demonstrates significant improvements over the Control 
model, indicating that the framework effectively enhances 
alignment with neural data overall.

Additionally, we combined the results of the improve-
ment ratio of three ReAlnet-fMRIs compared to Con-
trol tested on two datasets (within- and across-subject) 
together in Fig. 3B. The combined results further high-
light the model’s generalization performance across dif-
ferent datasets and subjects. The trends indicate that the 
similarity improvement across datasets is consistent: for 
example, the model that exhibits the highest improve-
ment in similarity to V1 when tested on the Shen fMRI 
dataset also shows the highest improvement in similarity 
to V1 when tested on the Horikawa dataset.

Fig. 3  (A) Across-subject model-fMRI similarity and similarity 
improvement ratio. Each circle dot indicates a subject from Horikawa 
fMRI dataset. Different shades of grey lines correspond to three differ-
ent subjects in Horikawa fMRI dataset. (B) Similarity improvement 
ratio of ReAlnet-fMRI compared to the Control (averaging the results 

across ten participants from Horikawa fMRI dataset) across both Shen 
fMRI and Horikawa fMRI datasets. Different shades of grey lines cor-
respond to three personalized ReAlnet-fMRIs trained on Shen fMRI 
dataset
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Internal representational analysis

Given that our image-to-fMRI encoding-based alignment 
framework can indeed help CORnet learn human visual 
representations from human fMRI signals and improve 
model-brain alignment, the next question is: what are the 
differences in visual information encoding between the 
fMRI-optimized ReAlnet-fMRIs and CORnet? Specially, 
what aspects of information encoding are enhanced by the 
brain fMRI data in ReAlnet-fMRIs? We conducted an in-
depth analysis of the IT layer of both ReAlnet-fMRIs and 
CORnet to examine their encoding of 49 object dimensions. 
These internal representational analysis results showed that 
both ReAlnet-fMRIs and CORnet encode a wide range of 
object visual features, with stronger encoding observed in 
dimensions of food-related, animal-related, artificial/hard, 
electronic/technology, and body/parts (Fig.  5A). Further 
calculating the differences between ReAlnet-fMRIs and 
CORnet, we observed that ReAlnet-fMRIs exhibit stronger 

This indicates that ReAlnet-fMRIs learn broader, cross-
modality human brain representations from human fMRI 
signals, not just fMRI representations.

Furthermore, the representational similarity of ReAlnet-
fMRI is notably higher than that of CORnet and Control in 
higher layers (Layer V4 and IT), while this difference is less 
pronounced in lower layers (Layer V1 and V2) (Fig. 4B). 
This could differ from the results in Fig.  3 showing that, 
compared with lower-level cortical areas (layer V1 and V2), 
in higher-level cortical areas (layer V4 and LOC), the repre-
sentational similarity of ReAlnet-fMRI is not notably better 
than that of CORnet and Control. We would like to empa-
thizes that there is no strict one-to-one mapping between 
the layers of a model and brain regions. For example, the 
model’s layer V1 is not equivalent to the brain’s V1 region. 
Thus, the differences observed between Figs. 3 and 4 could 
be due to the distinct definitions and modalities used in 
these analyses.

Fig. 4  Across-subject model-EEG similarity. Left shows the temporal 
similarity results. Blue and green square dots with black outlines at the 
bottom indicate the timepoints where ReAlnet-fMRI vs. CORnet and 

ReAlnet-fMRI vs. Control were significantly different p <.05. Shaded 
area reflects ± SEM. Right shows the similarity improvement ratio. 
Each circle dot indicates a subject from THINGS EEG2 dataset
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captured and learned by our ReAlnet-fMRIs. Further anal-
ysis across all layers in the model suggests that Layer IT 
shows the highest representational enhancement on these 
object features (Fig. 5D).

Why does CORnet exhibit weaker encoding of such 
information? On one hand, CORnet is trained on the 
1000-category classification task of ImageNet, an object 
recognition benchmark that does not specifically require the 
model to capture higher-level information, such as food-
related or artificial/hard object information. Perhaps, we 
can improve DCNNs by augmenting the original ImageNet 
1000 classification task with additional tasks that require 
more fine-grained recognition, but are common in everyday 
human experience, such as food and tool categorizations. 
This may enhance the model’s encoding of these important 
features. On the other hand, information such as food is 

processing in food-related, artificial/hard, and electronics/
technology dimensions, while showing weaker process-
ing in animal-related dimensions compared to CORnet 
(Fig. 5B). Figure 5C provides some example images with 
their concepts showing the highest and lowest representa-
tions of three top features (food-related, artificial/hard, and 
electronic/technology). It is important to note that these dif-
ferences do not imply that ReAlnet-fMRIs or CORnet fail 
to encode certain object dimensions. Instead, they suggest 
that models trained solely on image data may not capture 
as much information related to food, artificial objects, and 
electronics as models optimized with human neural data. 
Conversely, they might overly capture animal-related infor-
mation. More importantly, these results also indicate that 
the brain encompasses more food-related, artificial/hard, 
and electronic/technology information, which is effectively 

Fig. 5  Internal representations in ReAlnet-fMRIs and CORnet. (A) 
Partial r-square of each object dimension in ReAlnet-fMRIs and COR-
net. (B) The difference of partial r-square between ReAlnet-fMRIs and 
CORnet. Each circle dot indicates an individual ReAlnet-fMRI. (C) 

Example images from 200 images in THINGS EEG2 dataset’s test set 
corresponding to the three top dimensions from B. (D) Representa-
tional enhancements of the three top dimensions from B across four 
model layers
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Additionally, we analyzed the differences in internal 
representations between fMRI-optimized ReAlnet-fMRIs 
and the purely image-trained CORnet. Interestingly, we 
observed stronger encoding of information related to food 
and other several features in ReAlnet-fMRIs. These differ-
ences highlight the distinct ways the brain processes visual 
information compared to models trained purely on image-
based patter recognition.

Why does CORnet exhibit weaker encoding of such 
information? On one hand, CORnet is trained on the 
1000-category classification task of ImageNet, an object 
recognition benchmark that does not specifically require 
the model to capture higher-level information, such as 
food-related or artificial/hard object information. Per-
haps, we can improve DCNNs by augmenting the origi-
nal ImageNet 1000 classification task with additional 
tasks that require more fine-grained recognition, but are 
common in everyday human experience, such as food 
and tool categorizations. This may enhance the model’s 
encoding of these important features. On the other hand, 
information such as food is often learned through mul-
tiple sensory systems in real life, including taste, smell, 
motion, and even language, rather than through vision 
alone. CORnet, being a vision-only model, cannot learn 
these comprehensive encoding patterns as the human 
brain does. Many human fMRI studies have discovered 
the evidence of food-related and artificial object informa-
tion encoding in human brains (Cichy et al. 2014; Jain et 
al. 2023; Khosla et al. 2022), making it reasonable that 
ReAlnet-fMRIs, optimized with human fMRI signals, 
exhibits stronger encoding of such information and more 
brain-like representations.

Due to the lack of clear correspondence between differ-
ent model layers and brain regions, we proposed this multi-
layer encoding-based alignment method. Interestingly, the 
model-brain similarity results show different improvement 
patterns across fMRI and EEG: while model-fMRI simi-
larity improvements were reduced in higher-level brain 
areas, model-EEG similarity improvements were more 
pronounced in higher-level model layers. Several neuro-
physiological and methodological factors may contribute to 
this divergence. First, the number of voxels varies across 
brain regions, with early visual areas such as V1, V2, and 
V3 encompassing more voxels than higher-level areas like 
V4 and LOC. As a result, during the training, the model 
may have been more strongly guided by signals from early 
visual cortex, leading to a greater emphasis on lower-level 
features. Although the model ultimately learned brain-like 
visual representations across multiple levels, its exposure 
was biased toward early visual signals. Second, EEG inher-
ently has lower spatial resolution and is less sensitive to 
fine-grained, low-level visual features such as orientation 

often learned through multiple sensory systems in real life, 
including taste, smell, motion, and even language, rather 
than through vision alone. CORnet, being a vision-only 
model, cannot learn these comprehensive encoding patterns 
as the human brain does. Many human fMRI studies have 
discovered the evidence of food-related and artificial object 
information encoding in human brains (Cichy et al. 2014; 
Jain et al. 2023; Khosla et al. 2022), making it reasonable 
that ReAlnet-fMRIs, optimized with human fMRI signals, 
exhibits stronger encoding of such information and more 
brain-like representations.

Discussion

Our study aimed to teach the current state-of-the-art 
vision model, CORnet, human fMRI representations by 
training the model based on an image-to-fMRI encoding-
based alignment framework. These human fMRI-opti-
mized models, ReAlnet-fMRIs, enhanced the model’s 
alignment with human brain representations. We evalu-
ated this at different levels, and the results from multiple 
experiments based on multiple neuroimaging datasets 
confirmed that this alignment improvement was observed 
not only in within-modality and within-subject model-
fMRI comparisons but also in across-subject model-fMRI 
and across-modality model-EEG comparisons. This indi-
cates that ReAlnet-fMRIs, to some extent, captured the 
way how human brains process visual information and 
utilized brain fMRI data to optimize their weights in a 
brain-like manner within our alignment training process. 
This optimization process demonstrated strong general-
ization across images, image categories, brain imaging 
modalities, and individuals, ultimately resulting in a 
comprehensive enhance model-brain alignment.

This study builds upon the multi-layer encoding align-
ment framework introduced in (Lu et al. 2024) and extends 
its application to fMRI data, addressing a critical gap in our 
understanding of its generalizability across neural modali-
ties. While EEG and fMRI both provide valuable insights 
into neural activity, their fundamental differences in tempo-
ral and spatial resolution pose unique challenges for model 
optimization. One of the key contributions of this study is 
the validation of the framework’s adaptability to a neural 
modality with distinct characteristics. fMRI data’s spatial 
resolution and higher dimensionality required modifications 
to the framework, such as PCA for dimensionality reduc-
tion, to ensure effective training. By successfully applying 
the framework to fMRI data, this study demonstrates its 
flexibility and robustness, establishing it as a versatile tool 
for model-brain alignment research.
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brain representations compared to models trained purely on 
images. This makes it a more effective computational tool 
for current cognitive computational neuroscience research.

Additionally, we acknowledge a key limitation of our 
work: due to the mismatch between the images in the cur-
rent fMRI dataset and the ImageNet dataset, ReAlnet-fMRIs 
did not show improved performance on object classification 
tasks. As a result, we cannot yet provide evidence that our 
work improves model robustness. However, a related study 
using similar fMRI-optimized frameworks have already 
demonstrated that this approach can significantly enhance 
model robustness (Shao et al. 2024). Therefore, we are con-
fident that our alignment framework has the potential to not 
only serve as a better tool for understanding the brain but 
also improve model robustness in future work, provided the 
datasets are more suitable for alignment.

For the future directions, from a data perspective, the pri-
mary limitations of our current study stem from (1) the rela-
tively smaller sample size of neural datasets compared to 
image datasets with vast samples, and (2) the lack of shared 
labels between different datasets, such as the absence of 
some ImageNet category labels for images used in human 
neuroimaging studies. These limitations restrict further 
enhancement of ReAlnet-fMRI’s similarity to the human 
brain and reduce its classification performance on Ima-
geNet. From a technical perspective, future research may 
need to focus on (1) more effectively learning the alignment 
of models with the human brain using small-sample neu-
ral data, and (2) employing self-supervised or unsupervised 
learning methods that do not require category labels for 
model training.

In future work, we hope to extend this multi-layer 
alignment framework to broader domains, such as lan-
guage models, auditory models, and even cross-modal 
models. Certainly, these extended applications will also 
necessitate corresponding neural data collection efforts. 
Additionally, beyond focusing on model-brain alignment, 
it is worth testing whether models optimized using neural 
data show performance improvements in tasks where tra-
ditional models perform poorly. For instance, testing the 
robustness of models under different noise conditions to 
see if there is an improvement (some studies have already 
found brain-aligned models to have higher adversarial 
robustness) (Dapello et al. 2023; Shao et al. 2024), and 
evaluating whether the models exhibit stronger abstrac-
tion and generalization capabilities.

In summary, we utilized a neural alignment framework 
capable of synchronously optimizing multiple layers of 
CORnet and trained three individualized ReAlnet-fMRI 
models based on this framework. Through a series of 
detailed and comprehensive evaluations, we demonstrated 
that ReAlnet-fMRIs are more human brain-like visual 

or spatial frequency. Instead, EEG is often better at captur-
ing categorical, high-level information like faces, objects, 
or scenes. Indeed, previous EEG decoding studies have 
shown that decoding accuracy is higher for categorical-
level features than for low-level visual properties (higher 
decoding accuracy) than low-level visual features (Bae and 
Luck 2018; Khaligh-Razavi et al. 2018; Lu and Golomb 
2023a, b; Lu and Ku 2023; Wang et al. 2022). This may 
help explain why ReAlnet-fMRI - although trained on fMRI 
- shows stronger alignment with high-level EEG signals in 
later model layers such as V4 and IT layers. These observed 
differences suggest that representational alignment results 
could be influenced and interpreted in light of the charac-
teristics of the neural modality being used, which provides 
insights to future studies in model-brain alignment. Look-
ing ahead, integrating multiple neural data types (e.g., fMRI 
and EEG) may offer a more comprehensive path toward 
optimizing neural networks to better learn the full range of 
human visual representations.

To achieve more brain-like visual models, besides 
approaches like our current work that directly use neural 
data for model optimization (Dapello et al. 2023; Federer 
et al. 2020; Li et al. 2019; Lu et al. 2024; Pirlot et al. 2022; 
Shao et al. 2024), there are other strategies as well. These 
include modifying the model’s architecture by construct-
ing dual-way pathways models similar to the brain’s visual 
pathways (Bai et al. 2017; Choi et al. 2023; Han and Sereno 
2022, 2023; Sun et al. 2017), adding feedback pathways 
(Konkle and Alvarez 2023), incorporating topographic con-
straints (Finzi et al. 2022; Lee et al. 2020; Lu et al. 2023; 
Margalit et al. 2023), or changing the model’s training tasks 
by using self-supervised training or training the model in a 
richer 3D environment (Konkle and Alvarez 2022; Prince 
et al. 2023). These different approaches to realizing brain-
inspired AI are not mutually exclusive; in fact, they may 
complement each other. Current researchers from both com-
puter science and neuroscience are exploring various angles 
to word toward this goal.

With the increasing adoption of artificial neural networks 
as effective tools to study human cognitive mechanisms, 
cognitive psychologists and neuroscientists have employed 
these models in two ways: Using computational models to 
extract specific features from stimuli to identify how the 
human brain encodes these features (Cichy et al. 2016; 
Cichy and Kaiser 2019; McMahon et al. 2023). Leverag-
ing pre-trained models to perform reverse engineering 
manipulations to infer cognitive processing mechanisms 
(Kanwisher et al. 2023; Lu and Ku 2023). These approaches 
highlight the need for models that closely mirror human 
brain processing as foundational tools for studying cogni-
tive functions. Our ReAlnet-fMRI demonstrates, across 
multiple dimensions, that it aligns more closely with human 
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models that exhibit significantly enhance model-brain align-
ment. In addition, the training process of learning fMRI 
representations enabled ReAlnet-fMRIs to show stronger 
encoding in object dimensions such as food-related features 
compared to CORnet. We hope that our work helps bridge 
the gap between AI in computer vision and human visual 
neuroscience, thereby achieving more brain-like intelli-
gence and understanding the brain from an AI perspective.
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