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Abstract 
 
Visual working memory (VWM) is a temporary storage system capable of retaining information 

that can be accessed and manipulated by higher cognitive processes, thereby facilitating a 

wide range of cognitive functions. Electroencephalography (EEG) is used to understand the 

neural correlates of VWM with high temporal precision, and one commonly used EEG measure 

is an event-related potential called the contralateral delay activity (CDA). In a landmark study 

by Vogel and Machizawa (2004), the authors found that the CDA amplitude increases with the 

number of items stored in VWM and plateaus around three to four items, which is thought to 

represent the typical adult working memory capacity. Critically, this study also showed that the 

increase in CDA amplitude between two-item and four-item arrays correlated with individual 

subjects’ VWM performance. Although these results have been supported by subsequent 

studies, a recent study suggested that the number of subjects used in experiments 

investigating the CDA may not be sufficient to detect differences in set size and to provide a 

reliable account of the relationship between behaviorally measured VWM capacity and the 

CDA amplitude. To address this, the current study, as part of the #EEGManyLabs project, aims 

to conduct a multi-site replication of Vogel and Machizawa's (2004) seminal study on a large 

sample of participants, with a pre-registered analysis plan. Through this, our goal is to 

contribute to deepening our understanding of the neural correlates of visual working memory. 
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Introduction 

Visual working memory (VWM) is a temporary storage system that holds information that can 

be accessed and manipulated by higher cognitive functions (Luck & Vogel, 2013). Visual 

working memory is considered a central construct in cognitive neuroscience and is a putative 

intermediary for information transfer (Liesefeld & Müller, 2019), thereby facilitating various 

cognitive functions, including reading comprehension (Lotfi et al., 2022; Wang et al., 2022), 

planning and problem-solving (Cowan et al., 2005; Miyake & Shah, 1999; Naveh-Benjamin & 

Cowan, 2023), and learning new skills (Jongbloed-Pereboom et al., 2019; Pickering, 2006; von 

Bastian et al., 2022).  

There is a large body of work employing electroencephalography (EEG) to understand the 

neural correlates of VWM with high temporal precision. A commonly used EEG measure of 

VWM is an event-related potential (ERP) called the contralateral delay activity (CDA). This 

signal has also been referred to in other studies as Contralateral Negative Slow Wave (CNSW; 

Klaver et al., 1999), Sustained Posterior Contralateral Negativity (SPCN; Brisson & Jolicoeur, 

2007 and Perron et al., 2009), and Contralateral Search Activity (CSA; Emrich et al., 2009). 

These different terms all refer to the same visual working memory correlate. Hence, we will 

maintain the use of the term CDA throughout the remainder of the paper.  

The CDA is a difference wave constructed by contrasting activity ipsilateral and contralateral 

to to-be-remembered items. In a typical experiment on the CDA, items are shown bilaterally 

but only those on one side of the screen are supposed to be memorized. The idea of the 

subtraction is to eliminate any activity related to early perceptual and low-level processing by 

assuming that they equally affect ipsi- and contralateral ERPs. Activity over the contralateral 

hemisphere tends to be more negative than ipsilateral activity during VWM retention (Luria et 

al., 2016; Ngiam et al., 2021; Vogel & Machizawa, 2004). Thus, it has been suggested that the 

CDA reflects the neural activity related to maintenance of information in visual working 

memory, and studies have shown that the amplitude and duration of the CDA are linked to the 

amount of information stored in working memory.  
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In a seminal paper from Vogel and Machizawa (2004), the authors demonstrated that CDA 

amplitude increases with the number of items stored in VWM and plateaus at around three to 

four items, consistent with the typical adult working memory capacity (Cowan, 2001; Forsberg 

et al., 2023; Pashler, 1988). More importantly, Vogel and Machizawa (2004) showed that the 

increase in CDA amplitude with greater memory load correlated with individual VWM 

performance. Specifically, individuals with high VWM capacity exhibited a larger increase in 

CDA when attempting to memorize four compared to two items than individuals with low VWM 

capacity. In this study, the CDA was elicited using a color change detection task. The task 

involves presenting participants with a central arrow cue that indicates whether participants 

need to memorize items on the left or right of screen center. The cue is followed by a bilateral 

stimulus array with equal numbers of colored squares shown on each side (set size 1 to 10). 

After a short retention phase, participants are presented with a second array and asked to 

indicate whether any of the squares on the cued side changed color (Figure 2). The lateralized 

color change detection task is now a widely used paradigm to examine visual working memory 

processes (for a review see: Luria et al., 2016; Feldmann-Wüstefeld, 2021) and has been 

explored in several variations such as different set sizes, including distractions, retro-cueing 

and using different shapes and colors (Feldmann-Wüstefeld, 2021; Feuerstahler et al., 2019; 

Luria et al., 2016; Roy & Faubert, 2023; Schneider et al., 2017).  

The finding that the CDA amplitude is sensitive to the number of stimuli to be remembered has 

been replicated in numerous studies (Asp et al., 2021; Brady et al., 2016; Hakim et al., 2019; 

Heuer & Schubö, 2016; Quirk et al., 2020; Unsworth et al., 2015). Furthermore, several studies 

have validated the positive correlation between CDA amplitude increase and VWM capacity 

(Adam et al., 2018; Feldmann-Wüstefeld et al., 2018; Villena-González et al., 2020). In the 

review paper of Luria et al. (2016), the authors conducted a meta-analysis from 11 previous 

studies and reported an aggregated correlation of r = .596 (Luria et al., 2016). However, a 

recent study indicated that the typical numbers of subjects and trials for CDA experiments seen 

in the literature may be underpowered for detecting set size differences (Ngiam et al., 2021).  
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The insufficient power issue is even more pressing for the correlation between the VWM 

capacity and the CDA amplitude increase. Critically, Schönbrodt and Perugini (2013) 

demonstrated that correlation estimates typically stabilize at a sample size of approximately 

250 subjects. Except for one large study (N = 171; Unsworth et al., 2015), the average sample 

size of previous studies investigating the relationship between VWM capacity and CDA 

amplitude was 32 subjects (range 12-83 subjects for 12 studies; Luria et al., 2016). Finally, the 

inherent flexibility in EEG analysis, including analysis of the CDA, leaves many decisions up 

to the researcher. This leaves open the possibility to exploit these “researcher’s degrees of 

freedom” (i.e., garden of forking paths; Gelman & Loken, 2013), either intentionally or 

unintentionally. Such practices to find statistically significant effects can lead to erroneous 

inferences and perpetuate replication problems in cognitive neuroscience (Clayson et al., 

2019; Luck & Gaspelin, 2017).  

To address these general issues in the EEG literature, a new initiative, #EEGManyLabs 

(Pavlov et al., 2021), was recently launched. #EEGManyLabs is an international, collaborative 

effort focussed on directly replicating some of the most influential EEG studies published to 

establish the robust of, and confidence in, widely cited phenomena. Importantly, the 

#EEGManyLabs project is designed to address some of the limitations of previous replication 

efforts by using a large sample of participants, standardized procedures, and a pre-registered 

analysis plan (i.e., Registered Report; Pavlov et al., 2021).  

Given the aforementioned relatively recent meta-analysis on CDA in VWM (Luria et al., 2016), 

it is worth noting the specific advantages conferred by large-scale direct replication over meta-

analyses. While a meta-analysis provides a valuable summary of published, or publicly 

available, research, it is highly vulnerable to the issue of publication bias (Levine et al., 2009; 

Lin & Chu, 2018; Rothstein et al., 2005; Yang et al., 2023), threatening its validity and a risk of 

over-estimation of effect sizes and increase in the rate of false positives (Bartoš et al., 2023; 

Lane & Dunlap, 1978; Yang et al., 2023). In contrast, a large-scale direct replication, as 

operationalised in #EEGManyLabs, has the advantage of undertaking a new study on a larger 
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sample, increasing statistical power, and enhancing the robustness of the results. The 

adoption of identical materials across all participating laboratories in a large-scale replication 

ensures consistency and constrains potentially confounding sources of variation and 

measurement error. Consequently, any observed heterogeneity in the results is primarily 

attributed to differences in the subject populations and site-specific differences across the 

laboratories, allowing for a clearer understanding of the true effects being examined. 

As part of the #EEGManyLabs project, the current study aims to contribute to the existing 

literature on VWM and the CDA by conducting a robust multi-site, large-scale replication of 

Vogel and Machizawa's (2004) seminal study. The present study was chosen for replication 

by a global consortium of EEG specialists owing to its scientific significance (for further 

information on the selection process, refer to Pavlov et al., 2021). In accordance with the 

#EEGManyLabs project, this Registered Report will closely adhere to the original study design 

and ensure adequate statistical power with a large sample size. The present study will also 

follow preregistered analysis steps to ensure the integrity of the direct replication and statistical 

inferences (Paul et al., 2021). 

In line with the original study, the following hypotheses will be tested:  

The investigation of the relationship between the CDA amplitude and the number of items 

stored in memory will be conducted by replicating Experiment #3 of the original study, using 

three set sizes (2, 4, and 6 items per side). 

[H1.1] CDA amplitude increases from arrays of two items per side to arrays of four items per 

side.  

[H1.2] CDA amplitude increases from arrays of two items per side to arrays of six items per 

side.  

[H1.3] CDA amplitude for four items and six items are equivalent. 



 

 7 

Additionally, the study will examine whether the CDA amplitude is related to performance on 

the change detection task: 

[H2.1] VWM capacity (measured behaviorally) is positively correlated with CDA amplitude 

increase from two to four items.  

[H2.2] Subject’s VWM capacity (measured behaviorally) is not correlated with CDA amplitude 

increase from four to six items.  

Finally, replication success is established for each hypothesis separately. It is operationally 

defined as a statistically significant random-effects meta-analytic estimate in the same 

direction as in the original study or as a null effect, depending on the predictions of the 

respective hypotheses. These outcomes are obtained by combining results from all 

laboratories. 
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Method      
The protocol for this replication was developed in consultation with the original authors (co-

authors of the present work, EV, MM). The current document is a Stage 1 Registered Report 

that follows guidelines for open science in psychophysiological research as outlined by 

(Garrett-Ruffin et al., 2021). The study materials and initial code for data processing are 

available on the Open Science Framework (OSF) at the link https://osf.io/pbr8c/. Full 

information about each site (i.e., EEG, recruitment) will be also posted on OSF. The Open 

Neuro (https://openneuro.org/) repository will provide access to raw EEG data. Each site has 

obtained approval from the local ethics committee to conduct the study and share data. 

Known differences from the original study: 

 
Table 1. Details on original, replication and alternative pipelines. Deviations from the original 

pre-processing are highlighted in blue in the direct replication pipeline.  

Offline 
Processing 
Step 

Vogel & Machizawa (2004) #EEGManyLabs direct 
replication pipeline 

#EEGManyLabs 
advanced pre-processing pipeline 

Filter 1. Hardware online filter: 
bandpass of 0.01-80 Hz 
(half-power cutoff, 
Butterworth filters) 

2. 35 Hz LP only for plots 

1. Offline bandpass of 
0.01-80 Hz (half-power 
cutoff, Butterworth 
filters) 

2. 35 Hz LP for plotting 
 

1. Offline bandpass of 0.01-80 
Hz (half-power cutoff, 
Butterworth filters) 

2. 35 Hz LP for plotting 
 

Line noise 
removal 

no ZapLine method1 ZapLine method 

Ocular 
artifact 
rejection 

1. Trials containing ocular 
artifacts were removed 
(i.e., blinks or eye 
movements larger than 1 
degree). A heuristic for 1 
visual degree was used 
(25 microvolt bipolar 
HEOG amplitude 
threshold; adjusting the 
threshold for each 
subject based on visual 
inspection).  

2. Blinks: unipolar VEOG 
>50 microvolt 

 

1. Trials containing ocular 
artifacts will be 
removed (i.e., blinks or 
eye movements larger 
than 1 visual degree). 
A calibration paradigm 
will be used to 
estimate the subject 
specific amplitude 
representing 1 visual 
degree 

2. Blinks: unipolar VEOG 
>50 microvolt 

If eye-tracker recording is 
available, we will exclude 
trials with eye movements 
larger than 1 degree. If no 
eye-tracker is available, we 
identify ocular artifacts 
using a tailored subject-
specific amplitude 
threshold for the EOG 
electrodes, which is 
obtained from the saccadic 
calibration task.  

 

Artifact 
Rejection 

1. peak-to-peak amplitude 
>200 microvolt 

2. Visual inspection was 
used to identify and 
exclude trials containing 
movement artifacts or 
blocking  

1. peak-to-peak 
amplitude >200 
microvolt 

2. Visual inspection will 
be used to identify and 
exclude trials 
containing movement 
artifacts or blocking  

1. Peak-to-peak amplitude 
>200 microvolt 

2.  bad trial identification 
method introduced by 
(Adam, Robison, and Vogel 
2018) 
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Bad Channel 
Identification 

1. peak-to-peak amplitude 
>75 microvolt. Bad 
channels were not 
interpolated, but 
artifactual trials were 
rejected 

2. Visual inspection 

1. peak-to-peak 
amplitude >75 
microvolt. Bad 
channels will not be 
interpolated, but 
artifactual trials will be 
rejected 

2. Visual inspection 

1. Correlation below 0.85 with 
neighbouring channels 

2. 4 SD or more line noise 
relative to signal than all 
other channels 

3. Blocking longer than 5 s 

Bad Channel 
Interpolation 

N/A N/A Spherical spline interpolation 

Reference Algebraic average of the left and 
right mastoids 

Algebraic average of the left and 
right mastoids 

Algebraic average of the left and right 
mastoids 

Baseline 
Interval 

-200 - 0 ms  -200 - 0 ms -200 - 0 ms 

Region of 
Interest 

left electrode cluster: P3, T5/P7, 
O1;  
right electrode cluster: P4, T6/P8, 
O2 

left electrode cluster: P3, T5/P7, 
O1;  
right electrode cluster: P4, T6/P8, 
O2 

left electrode cluster: P3, T5/P7, O1;  
right electrode cluster: P4, T6/P8, O2 

CDA time 
interval 

retention phase (i.e., 300 - 900 ms 
after the onset of memory array) 

retention phase (i.e., 300 - 900 
ms after the onset of memory 
array) 

retention phase (i.e., 300 - 900 ms 
after the onset of memory array) 

Set Size Experiment #3: 2,4,6 
 

2, 4, 6 2, 4, 6 

Visual 
Memory 
Capacity  

K K & d’ K & d’ 

1 Note that several labs are recording the task with an eye-tracker, which will induce line 
noise. Therefore, we decided to use ZapLine to reduce the line noise. 
 

Sample size & Inclusion criteria 

Participants will be recruited from universities or nearby communities. The study will only 

include individuals between 18 and 35 years free from any diagnosed psychiatric or 

neurological disorders and with intact color vision. We will acquire demographics (i.e., age, 

gender), handedness (Edinburgh Handedness Inventory [EHI]; Oldfield, 1971) and education 

level based on International Standard Classification of Education (ISCED) 

(http://uis.unesco.org/en/topic/international-standard-classification-education-isced).  

 
The required sample size is estimated for each hypothesis: For hypothesis #1, we used the 

CDA power calculator (https://williamngiam.shinyapps.io/CDAPower/; Ngiam et al., 2021) to 

estimate the required sample size to detect a set-size effect between set size 2 and 4 (which 

is similar as between set size 2 and 6). With a minimum of 170 clean trials per condition (i.e., 
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excluding subjects with a bad trial rate > 30%) and 90% power, the estimated number of 

subjects required is 70 (see Figure 1).  

The following procedure was conducted to estimate the required sample size to investigate the 

correlation between VWM capacity and CDA amplitude difference (i.e., hypothesis #2): In the 

original study, 36 participants were recruited and the subject's VWM capacity was correlated 

with the CDA amplitude increase between two and four items with a correlation estimate of r = 

.78 (Vogel & Machizawa, 2004). The power analysis showed that with an alpha level of .02 

and an assumed effect size of 50% (i.e., r = .39) of the original study, a sample size of N = 68 

is required to achieve 90% power in detecting the effect. For the sample size calculation of 

hypothesis #2, we used the R package “pwr” (pwr.r.test(r = 0.39, sig.level = 0.02, power = 0.9, 

alternative = "greater"); Champely, 2020). However, according to Schönbrodt & Perugini 

(2013), correlation starts to stabilize at the sample size N = 250. As the #EEGManyLabs is 

open for any lab to participate, we decided that each participating lab (i.e., N = 10) will recruit 

25 participants, resulting in 250 participants in total, which will provide sufficient power to 

investigate both hypotheses. 

 

Figure 1. CDA power calculation. We estimated the required sample size for the set size effect between 

set size 2 and 4, assuming at least 170 trials (i.e., maximum of 30% bad trials) and 90% power. The 

estimated number of subjects required is 70 (red dot). 

 

Exclusion criteria 

The color change detection task requires the participants to discriminate between colored 

squares, therefore color blindness is a critical exclusion criterion. We will test the color-vision 
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with an online color-vision test (https://colormax.org/color-blind-test/). If a participant has a 

color vision deficiency, the participant will be excluded.  

 
Exclusion criteria for direct replication 

Following the original study, we will exclude trials with eye movements, blinks, and blocking 

(amplifier saturation after drift). To identify eye movements and blinks, horizontal 

electrooculography (EOG) will be concurrently recorded. Contaminated trials will be identified 

by large (>1°) eye movements (Vogel & Machizawa, 2004).  

 

In the original study, the authors used a heuristic for 1° horizontal eye movement and a fixed 

amplitude threshold for each subject. In this replication study, we will deviate from this 

procedure and calculate the 1° horizontal eye movement amplitude for each participant in order 

to more accurately estimate an individual’s amplitude threshold. To determine the individual 

participant’s exclusion amplitude threshold, which reflects 1° horizontal eye movement, there 

will be a separate horizontal EOG saccade calibration task prior to the main experiment. This 

task involves participants making saccades to left and right targets on the screen. Participants 

will start each trial by fixating at the center of the screen. Following a key press there will be a 

jittered interval between 1200~1600 ms and a saccade target (a red disk; 0.6° in size) will 

appear either 3° or 6° away from the fixation on the left or right side of the screen along the 

horizontal midline. Participants are instructed to make a saccade to the target location as soon 

as it appears and press a space bar once they have successfully made the saccade. There 

will be 15 trials per condition, resulting in 60 trials total. The data from the saccade calibration 

paradigm will be preprocessed by (1) bandpass filtering the data from 0.1-40 Hz; (2) epoching 

from -200 to 600 ms with respect to the onset of the saccade target; and (3) baseline correction 

using a pre-stimulus baseline interval of -200 to 0 ms. Given previous research showing 

saccade onset latency being ~200 ms (Westheimer, 1954a, 1954b), horizontal EOG (i.e., 

HEOG = HEOGR - HEOGL) channel amplitudes from horizontal saccades will be averaged 

during the 300~400 ms interval across the left and right conditions. The 1° horizontal eye 

movement amplitude threshold will then be calculated by extrapolating from 3° and 6° eye 
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movements (estimating the linear regression curve using fittype function in MATLAB) as 

previous reports have shown HEOG amplitudes and the size of saccades have a consistently 

linear relationship (Luck, 2014). We do not measure the 1° eye movement directly, as a pilot 

study demonstrated that estimating the 1° eye movement is more error-prone and has too 

much variability. Furthermore, blinks will be detected by using an amplitude threshold (>50 

microvolt) in the unipolar VEOG channel. In addition, a segment will be marked as bad if any electrodes 

of interest (i.e., HEOG, P3, T5/P7, O1; P4, T6/P8, O2) had a peak-to-peak amplitude >200 microvolt 

within one segment. Finally, visual inspection will be used to identify bad trials. For an overview of the 

exclusion criteria and analysis pipeline see Table 1. If more than 30% of trials (all set-size conditions 

combined) are rejected by these combined criteria, the subjects will be excluded from further 

analysis to assure sufficient number of trials (see sample size calculation). 

 

Alternative analysis pipelines 

For the alternative pipelines (Table 1), to identify eye movements and blinks, all labs will record 

horizontal and vertical electrooculography (EOG) and several labs will additionally record eye 

tracking data (see Table 2). Trials contaminated by eye movements larger than 1° (Vogel & 

Machizawa, 2004) will be identified based on eye tracking data if available (i.e., trials containing 

eye movements larger than 1°), and otherwise based on EOG data as described in the previous 

section. In addition to the bad trial identification methods described in the direct replication, we 

will also utilize the bad trial identification method introduced by Adam et al. (2018) (see below). 

Again, if more than 30% of trials for a specific set size are rejected by these combined criteria, the 

subjects will be excluded from further analysis to assure sufficient number of trials, see sample 

size calculation. 

 

Procedure 

Upon their arrival, participants will receive a brief overview of the experiment and will be asked 

to give their informed written consent for participating in the study and allowing data sharing. 

Next, the participants will be asked to fill out a short questionnaire regarding history of 
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psychiatric and neurological disorders, handedness and educational level and carry out an 

online color-blind test (https://colormax.org/color-blind-test/).  

 

Next, participants will be comfortably seated in a chair. If available, the experiment will be 

conducted in a sound- and electrically-shielded Faraday recording cage (see Table 2). The 

cage is equipped with a chinrest to minimize head movements. A cap with integrated 

electrodes will be placed on the participant's head and impedances will be checked if provided 

by the EEG amplifier system and improved if necessary (see Table 2 for details). As this project 

is part of a wider initiative on replicability in EEG (#EEGManyLabs), several of the laboratories 

in this replication will also collect resting state EEG recordings together with some personality 

measures (https://osf.io/sp3ck/; Pavlov et al., 2021). Neither resting EEG nor personality data 

will be analyzed in the current study but will be merged across sites as part of a future 

replication project to be reported elsewhere. Subsequently, the actual color change detection 

task experiment will begin. The expected duration of the entire experiment is approximately 

120 minutes. Upon completion of the examination, participants will receive compensation or 

credit for their participation. 

 

Experimental Paradigm 

The color change detection task is identical to the task used in the original study (Vogel & 

Machizawa, 2004). The paradigm was implemented in MATLAB, using the PsychToolbox 

extensions (Brainard, 1997; Pelli, 1997). Each trial of the task starts with a fixation cross 

presented for a random time between 300 and 400 ms. Then, a central arrow appears for 200 

ms, indicating which side of the screen the participant should pay attention to. This is followed 

by another fixation period of a random time interval between 300 ms and 400 ms. Afterwards, 

a memory array will be presented for 100 ms, which will consist of either 2, 4, or 6 colored 

squares on each side of the screen. Participants will be instructed to only memorize the part 

of the memory array indicated by the arrow. This will be followed by a 900 ms retention interval 

with a blank screen and a fixation cross (see Figure 2). Finally, a test array will be presented 

for 2000 ms, and the participants will have to indicate whether the test array is identical to the 
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previous memory array ("no-change" trial) or whether the test array was different by one color 

("change" trial). The participants will indicate whether a change occurred by pressing either 

the A or L button on a keyboard. The button they press will depend on the instruction they were 

given, with half of the participants being instructed to press the A button for a change and the 

L button for no change, while the other half will be instructed to do the opposite. Participants 

will be instructed to use their left hand to press the A button and their right hand to press the L 

button. During the task, participants will be asked to focus their gaze on the fixation cross in 

the center of the screen until the probe appears.  

 
All stimuli will be displayed within two regions that are 4° x 7.3° in size and are located 3° to 

the left and right of a central fixation cross on a gray background (8.2 cd m-2). Each memory 

array consists of 2, 4 or 6 colored squares (0.65° x 0.65°) in each visual field. The squares are 

chosen at random from a set of seven highly distinct colors (red, blue, violet, green, yellow, 

black and white), and a specific color appears no more than twice in a single array. In simpler 

terms, a color may appear in both hemifields, but it will never be repeated within a single 

hemifield. The positions of the stimuli are randomized on each trial, with the restriction that the 

distance between squares within a visual field is at least 2° (center to center). In 50% of the 

trials, the color of one square in the test array on the cued side is different from the 

corresponding square in the memory array, while in the remaining trials, the colors of the two 

arrays are identical.  

 
The task is divided into five blocks, each containing 144 trials (i.e., 720 trials per subject and 

240 trials per condition and subject). The cue direction (left or right) and set size (2, 4 or 6 

items on each side of the screen) will be randomly varied throughout the trials to ensure a 

balanced distribution of all conditions in each block. In line with the original study, no training 

exercise will be conducted prior to the main task. 



 

 15 

 

Figure 2: Lateralized color change detection task. The figure is illustrative and not to scale.  

 
 

Neurophysiological Data Acquisition 

The replicating labs will be using one of the following EEG systems and eye trackers (if 

available to the participating lab). Details about the acquisition setups are described in Table 

2. All labs will provide the raw data to Zurich’s Lab, where it will be pre-processed and 

analyzed. In general, large-scale studies of adults indicate that data from across sites can be 

combined when basic data curation and processing steps are aligned (Bigdely-Shamlo et al., 

2020). In case we encounter data alignment problems, we will conduct re-centering and re-

scaling techniques as introduced in previous research (Bleuzé et al., 2021; Maman et al., 2019; 

Mellot et al., 2023; Rodrigues et al., 2019). 

  

Table 2. Data acquisition settings at each lab 

Lab Screen 
type; size; 
ratio; 
refresh 
rate 

Stimulus 
presentati
on 
language 

Distan
ce 
betwe
en 
chinre
st and 
monito
r 

EEG 
system; 
number of 
channels; 
sampling 
rate 

Referen
ce; 
groundin
g 

Impedan
ces 

Eye 
tracker
; 
sampli
ng rate 

HEO
G 

Farad
ay 
cage 

Soundpr
oof or 
sound 
attenuat
ed 
recordin
g room 

Universi
ty of 
Zurich 

Philips 
242E1; 
540x414m
m; 
800x600; 
100 Hz 

Psychtool
box 3.0.18 

70 cm ANT 
Neuro; 128 
channels; 
500 Hz 

CPz; 
GND 
adjacent 
to M1 

Kept 
below 20 
KOhm 

EyeLin
k 
1000; 
500 Hz 

Yes Yes Yes 

Dartmo
uth 
College 

VPixx; 
540x300 
mm; 1090 
x 
1080;120 
Hz 

Psychtool
box 3.0.18 

45 cm BrainVision
; 32 
channels; 
500 Hz 

Right 
mastoid; 
Fpz 

Kept 
below 10 
KOhm 

No 
 

Yes Yes Yes 

Universi
ty of 
Sheffiel
d 

Iiyama G-
master 
GB2488H
SU; 

Psychtool
box 3.0.18 

50cm 
(nasio
n to 
screen 

Biosemi; 
64 
channels; 
Record at 
2048 Hz 

Cz; Yes Not 
Available 
(Only 
offset + 
25 mV) 

No 
 
 

Yes Yes No 
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531.4 x 
298.9mm; 
1920 x 
1080; 144 
Hz 

distanc
e; 

and then 
down-
sample  

Universi
ty of 
South 
Florida 

Dell 
p2314h, 
23” 
widescree
n, 60 Hz 

Psychtool
box 3.0.18 

65 cm Magstim 
EGI, 128 
channels, 
500 Hz 

Cz; PCz Kept 
below 50 
KOhm 

No Yes No No 

Icelandi
c Vision 
Lab, 
Universi
ty of 
Iceland 

2560*1440 
60 Hz 
ASUS 
PG278QR 
27” 

Psychtool
box 3.0.18 

57cm 
(nasio
n to 
screen 
distanc
e; 

BrainVision
; 32 
channels; 
1000 Hz 

Cz, Fpz Kept 
below 15 
KOhm 

No  Yes No Yes 

The 
Ohio 
State 
Universi
ty 

BENQ 
XL2420-B; 
1920 x 
1080; 120 
Hz 

Psychtool
box 3.0.18 

80cm BrainVision
;32 
channels; 
1000Hz 

Cz, Fpz Kept 
below 20 
KOhm 

EyeLin
k 
1000; 
500 Hz 

Yes Yes Yes 

Universi
ty of 
Münster 

ViewpixxE
EG 
1920 x 
1080 
120Hz 

Psychtool
box 3.0.18 

86 Biosemi; 64 
+ 3 
channels; 
1024Hz 

Referen
ce free; 
GND 
adjacent 
to POz 

Not 
available 
with 
Biosemi 

Eye 
Link, 
500 
Hz  

Yes no Yes 

Universi
ty of 
Jyväsky
lä 

Asus, 
1920 x 
1080, 
120 Hz 

Psychtool
box 3.0.16 

67 cm Neurone; 
Easycap;  
64 
channels; 
500 Hz 

FCz; 
AFz;  

Kept 
below 20 
KOhm 

EyeLin
k 
1000; 
500Hz 

Yes No Yes 

Universi
ty of 
Mainz 

Eizo 
ColorEdge 
CS2420; 
24.1’’ diag; 
1920x120
0; 60 Hz 

Psychtool
box 
3.0.18 

67 cm BrainProdu
cts; 64 
channels; 
1000 Hz 

Cz; Fpz Kept 
below 10 
KOhm 

No Yes Yes Yes 

North 
Dakota 
State 
Universi
ty 

ASUS 
ROG Strix 
XG27AQ 
27”; 2560 
x 1440;  

Psychtool
box 
3.0.18 

50 cm Biosemi; 64 
+ 8 
channels; 
512Hz 

Referen
ce free; 
GND 
adjacent 
to POz 

Not 
available 
with 
Biosemi 

Eye 
Link 
1000, 
500 Hz 

Yes Yes Yes 

 

Artifact Removal and Data Pre-processing 

All EEG data will be imported into EEGLAB (Delorme & Makeig, 2004) and processed using 

two pipelines: a pipeline that follows the original study as closely as possible (see Vogel & 

Machizawa, 2004), and a pipeline that utilizes a more recent analysis technique.  

 
Direct replication pre-processing pipeline 

Following the Vogel & Machizawa (2004) study, we will downsample the data to 250 Hz and 

apply a bandpass filter of 0.01-80 Hz (half-power cutoff, Butterworth filters) using the EEGLAB 

function pop_eegfiltnew (Widmann & Schröger, 2012). Since certain labs may be measuring 
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eye movements using an eye tracker or may not have access to a faraday cage, line noise (50 

Hz in Europe, 60 Hz in the USA) may be introduced as a result. To mitigate this, we will use 

ZapLine (de Cheveigné, 2020) to remove line noise artifacts by removing seven power line 

components. The Algorithm is highly effective at removing power line artifacts while preserving 

non-artifactual parts of the signal (de Cheveigné, 2020). This deviation from the original study 

is necessary to ensure accurate measurements. Afterwards, we will re-reference the data to 

an algebraic average of the left and right mastoids. We will segment the data from -200 to 1200 

ms after the presentation of the memory array. The segments with saccadic eye movements 

(greater than 1° from the fixation cross) will be excluded from further analysis using horizontal 

EOG channel response data from the saccade calibration task (for detailed information please 

refer to Exclusion Criteria). Furthermore, blinks will be detected by using an amplitude 

threshold (>50 microvolt) in the unipolar VEOG channel. In addition, a segment will be marked 

as bad if any electrodes of interest (i.e., HEOG, P3, T5/P7, O1; P4, T6/P8, O2) had a peak-to-

peak amplitude >75 microvolt within one time window (i.e., bad channel criteria). Finally, visual 

inspection will be used to identify bad trials. Finally, a baseline correction was applied using a 

pre-stimulus interval of -200 to 0 ms. 

 
Advanced pre-processing pipeline 

In addition to following the original study's data pre-processing protocol, the data will also be 

processed using recent advancements in neuroscience to assess the robustness of the results. 

First, error-prone channels will be detected by the algorithms implemented in the EEGLAB 

plugin clean_rawdata (http://sccn.ucsd.edu/wiki/Plugin_list_process) without applying ASR 

(automated subspace removal). An electrode is defined as an error-prone when recorded data 

from that electrode is correlated at less than 0.85 to an estimate based on neighboring 

electrodes. Furthermore, an electrode is defined as error-prone if it has more line noise (i.e., 

50 Hz in Europe, 60 Hz in USA) relative to its signal than all other electrodes (4 standard 

deviations). Finally, if an electrode has a longer flat line than 5 s, it is considered error prone. 

These error-prone electrodes will automatically be removed and later be interpolated using a 

spherical spline interpolation (EEGLAB function eeg_interp.m). Next, data will be filtered using 
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a bandpass filter of 0.01-80 Hz (half-power cutoff, Butterworth filters). Again, we will use 

ZapLine (seven components) to remove line noise. Subsequently, the data will be re-

referenced to an algebraic average of the left and right mastoids, segmented from -200 to 1200 

ms after presentation of memory array. To determine whether a trial is artefactual, three criteria 

will be applied: First, we will exclude trials with blinks and large saccadic eye movements. If 

eye-tracker recording is available, we will exclude trials with eye movements larger than 1°. If 

no eye-tracker is available, we identify ocular artifacts using a tailored subject-specific 

amplitude threshold for the HEOG electrodes, which is obtained from the saccadic calibration 

task. Second, a sliding time window approach will be adopted from Adam et al. (2018). To 

identify trials containing blocking artifacts, a sliding time window of 200ms will be shifted across 

the segments without overlap. If any time window contained 30ms of flat line activity in any 

channel (i.e., range of amplitudes <1 microvolt), the corresponding segment was marked as 

bad. Third, to identify trials containing large amplitude artifacts, non-overlapping sliding time 

windows of 14ms will be used. A segment will be marked as bad if any electrode of interest 

(i.e., HEOG, P3, T5/P7, O1; P4, T6/P8, O2) had a peak-to-peak amplitude >200 microvolt 

within one time window. To foster scientific transparency and enable exact methodological 

replications and reproducibility, no visual inspection for bad trials rejection will be conducted, 

because this decision is subjective. Finally, a baseline correction will be applied using a pre-

stimulus baseline interval of -200 to 0 ms.  

Confirmatory analysis plan 

CDA extraction 

To remove contribution of any non-VWM-specific, bilateral activity, the CDA is computed as a 

difference wave on a trial-by-trial basis by subtracting activity ipsilateral to cued items 

(presented left or right of screen center) from contralateral activity. The CDA amplitude is 

extracted from a time window of 300–900 ms after the onset of the memory array. We will 

compute the mean CDA amplitude for each participant separately for each set size (i.e., 2, 4 

and 6 cued items). For the computation of CDA, we use posterior parietal, lateral occipital, and 
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posterior temporal electrode sites (i.e., left electrode cluster: P3, T5/P7, O1; right electrode 

cluster: P4, T6/P8, O2). First the difference is calculated in electrode pairs (P3/P4), (P7/P8), 

(O1/O2) and then averaged. The CDA is calculated on a trial-by-trial basis for all set sizes and 

for all trials (i.e., correct and incorrect trials). The final step is to compute the overall average 

CDA for each set size by averaging the CDA of the right and left cue direction of the respective 

set size. 

 
Data Quality and Psychometric Internal Consistency 

Estimates of data quality and psychometric internal consistency will be reported. Data quality 

characterizes measurement error, and psychometric internal consistency provides information 

about whether measurement error is low enough to discriminate scores between people, which 

is crucial for studying individual differences (Clayson, Brush, et al., 2021; Clayson & Miller, 

2017b; Luck et al., 2021). These metrics are reported to characterize the obtained data, but 

data will not be excluded based on these metrics to be consistent with the procedures of the 

original study. 

Arithmetically derived estimates of the standard error of the mean will be used to characterize 

data quality (Luck et al., 2021). These estimates will separately quantify the precision of CDA 

for each set size (2, 4, and 6 cued items) using single-trial estimates of CDA (contralateral-

ipsilateral activity differences).   

Psychometric internal consistency estimates will use generalizability theory equations to 

compute coefficients of dependability for difference scores (Baldwin et al., 2015; Brennan, 

2005; Clayson, Baldwin, et al., 2021; Clayson, Brush, et al., 2021; Sundre, 1993). Time-window 

mean amplitude estimates of single-trial trial scores of ipsilateral and contralateral activities 

will be used to estimate the observed group-level internal consistency of the difference scores. 

Dependability of contralateral-ipsilateral activity difference scores will be estimated separately 

for each set size and data collection site using the ERP Reliability Analysis Toolbox (Clayson, 

Carbine, et al., 2021; Clayson & Miller, 2017a). Because CDA scores are calculated as the 

difference between activity from different electrode sites on the same trial, residual covariances 
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will be estimated because the constituent events of the difference scores are co-occurring 

(Clayson, Baldwin, et al., 2021). 

 

Outcome-neutral test 

To ensure that the data can test the stated hypotheses, we are including quality checks (see 

also pilot section) and outcome-neutral tests. As outcome-neutral test, we test the presence of 

an asymmetry between contra- or ipsilateral electrode clusters time-locked to the memory 

array. For this, we will average the event-related potentials across all set sizes and all subjects 

(i.e., grand averaged ERP) elicited by memory arrays that were either contra- or ipsilateral to 

electrode position. A paired sample t test for CDA between ipsilateral and contralateral sites 

will be performed separately at each study site to verify the expected within-lab CDA 

experimental effect. If the t test is significant (p < .05) with more negative CDA for contralateral 

activity than for ipsilateral activity, then this pattern of effect will justify moving forward with 

testing the proposed hypotheses. 

 
Statistical analysis 

For all the statistical analyses, frequentist and Bayesian approaches will be employed. To 

estimate effect sizes, the statistical analysis will be initially conducted for each participating lab 

separately. Because of the small sample size in each lab, we will refrain from interpretation of 

the lab specific statistics. However, the overall replication success for the project will be 

determined based on meta-analytic pooled effect sizes, as per the defined criteria. 

 
Statistical analysis for Hypothesis #1 

A repeated-measures ANOVA of the CDA amplitude in the original study revealed a significant 

main effect for 'set size'. Post-hoc t-tests showed significant increases in CDA amplitude for 

set sizes 4 and 6 compared to set size 2, with no significant differences between set sizes 4 

and 6. In accordance with the original study, we will also conduct repeated-measures ANOVA. 

The significance level will be set to p < 0.02 uncorrected for multiple comparisons. If the 

ANOVA reveals a significant main effect, we will further conduct post-hoc t-tests (with a 
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significance level of p < 0.02, one-sided). We specifically test one-sided, because we 

hypothesize a significant increase in CDA amplitude from arrays of two items per side to arrays 

of four items per side [H1.1] and six items per side [H1.2.]. As in the original study, we will 

adjust the p-values with the Greenhouse-Geisser correction for nonsphericity (Jennings & 

Wood, 1976). If the ANOVA reveals a significant main effect, and the post-hoc t-tests show a 

significant increase in CDA amplitude between arrays of two items per side and arrays of four 

items per side or six items per side, it will support hypotheses [H.1.1] and [H.1.2], respectively.  

We will run the corresponding analyses in a Bayesian analytical framework using a Bayesian 

generalized linear mixed models implemented in the brms R package (Bürkner, 2017). The 

predictor variable will be 'set size' (factor of 3 levels: set size 2, set size 4, set size 6), and the 

covariates gender (factor of 2 levels: male, female), EHI (factor of 2 levels: right-handed, left-

handed), and site (factor of 10 levels) will be added. Subsequently, the credible intervals (CIs) 

of the posterior distributions were calculated from the newly estimated levels of significance. 

We opted not to calculate Bayes factors for point estimates to determine whether the effect 

was zero or unequal to zero. This decision was made because these Bayes factors, which rely 

on the Savage-Dickey ratio, heavily depend on the arbitrary selection of the prior distribution 

for each effect. Instead, we employed a different approach: we considered a model parameter 

to be significant if its 95% confidence interval (CI) does not include zero. As suggested by 

Gelman et al. (2007), the predictors and outcome variables will be scaled to achieve a mean 

of 0 and a standard deviation of 0.5. For initial prior distributions, uninformative Cauchy priors 

will be set to a mean of 0 and a standard deviation of 2.5. Please note that the BayesFactor R 

package, which would provide an ANOVA design, does not provide the capability to specify 

the precise location of the prior, thus making it unsuitable for implementing a Bayesian 

sequential updating approach. This approach is necessary for accumulating evidence across 

various datasets and determining the success of replication.  

 
Statistical analysis for Hypothesis #2 

In the original paper, VWM capacity was positively correlated with CDA amplitude increase 

from set size 2 to 4 (when the smaller set size is below typical adult working memory capacity 
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estimates), but not from set size 4 to 6 (when both set sizes are at or exceed capacity estimates 

for typical adults). To replicate this, we will calculate the mean CDA amplitude increase from 

set size 2 to 4, and from set size 4 to 6, for each subject individually. The VWM capacity will 

be calculated using the same formula as in the original study. This formula was introduced by 

Pashler (1988) and refined by Cowan (2001). It is based on the assumption that if a person 

can retain K items from an S-item array, then the changed item should be among the K items 

being held in memory on (K/S) trials, leading to correct answers on (K/S) trials where an item 

changed. The formula accounts for the false alarm rate to adjust for guessing and is expressed 

as K = S x (H - F), where K is the memory capacity, S is the set size, H is the observed hit rate 

in the given set size, and F is the false alarm rate in the given set size. The resulting K scores 

from all set sizes (i.e., 2, 4, 6) will be used to compute an average K score, which we will use 

as the behavioral measure of VWM capacity. The relationship between VWM capacity and an 

increase in CDA amplitude from two to four items will be statistically tested using Pearson’s 

correlation. The significance level will be set to p < 0.02 (one-sided). If the Pearson’s correlation 

reveals a significant positive relationship between VWM capacity and the CDA amplitude 

increase from two to four items, it will support the hypothesis [H2.1]. Furthermore, we will 

conduct a Bayesian linear mixed model with a prior assuming the reported correlation 

coefficient from the original study (r = .78). The covariates will include gender, EHI, and site. 

Again, significance is considered if the 95% confidence interval (CI) of the model parameter 

does not include zero. 

 
Replication Success 

Replication success will be assessed for each hypothesis separately and is defined 

operationally as a statistically significant random-effects meta-analytic estimate (at p < .02) 

combining the results from the different laboratories (with a site as a random effect), in the 

same direction as in the original study.  

Hypothesis [H. 1.3] and [H.2.2] will be analyzed using an equivalence test for meta-analyses 

(Lakens, 2017). The equivalence test assesses whether the difference in CDA amplitude 

between arrays of four items and six items is as extreme as the smallest effect size of interest 
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(SESOI) using the two one-sided tests (TOST) procedure implemented in the R package 

TOSTER (Caldwell, 2022; Lakens, 2017). To perform TOST, the SESOI and its lower and 

upper equivalence bounds must be established. For replication studies Simonsohn 

recommended specifying the equivalence bounds for replication studies using the “small 

telescopes approach” (Simonsohn, 2015). The idea is to consider the effect size that would 

give the original study 33% power. If the original study had 33% power, the probability of 

observing a significant effect, if there was a true effect, is too low to reliably distinguish signal 

from noise (Simonsohn, 2015). Using the small telescopes approach for hypothesis [H 1.3], 

the SESOI is d = 0.36. An alternative approach would be to calculate the smallest effect size 

that has enough power to be detected based on the given sample size and alpha level. With 

this approach the smallest effect size would be very similar to the small telescope approach 

(i.e., d = 0.44). Therefore, we decided to define the SESOI based on the “small telescopes 

approach” (i.e., d = 0.36) as this approach was specifically recommended for replication 

studies. The TOST procedure is then conducted against these bounds based on the SESOI. 

If the 90% confidence interval of the meta-analytic effect size falls within the equivalence 

bounds, the observed meta-analytic effect is statistically equivalent (Lakens, 2017). In order to 

test hypothesis [2.2.], which postulates that there is no correlation between the subject's VWM 

capacity and the CDA amplitude increase from four to six items, we will conduct another 

equivalence test. Similar to hypothesis [1.3.], we will use the small telescope approach to 

specify the SESOI (i.e., r = ±0.29).  

Finally, sequential Bayesian updating will be employed by fitting a Bayesian model for each 

hypothesis separately to each dataset. The posterior distributions obtained from each analysis 

will be used as priors for the next analysis, allowing evidence to be accumulated across the 

datasets from different labs. This approach is expected to produce greater statistical power 

than independent analyses and yield more robust outcome parameters. 

 

Sensitivity analyses 

 

Measure of VWM capacity 
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Recently, there have been concerns regarding the validity of K score as a measure of VWM 

capacity. Specifically, some researchers in the field have noted that K operates under the 

assumption of all-or-none memories and does not account for individual decision biases, which 

can lead to an overestimation of capacity depending on the observer's strategy (Brady et al., 

2022; Williams et al., 2022). 

In light of these concerns, we propose conducting an additional analysis using the d' (d prime) 

metric. d' is a commonly used measure in signal detection theory and provides a unitless, 

normalized measure of sensitivity that is independent of response bias. D prime is defined as 

d' = Z(hit rate) - Z(false alarm rate). A hit would be defined as reporting a color change when 

there was one, and a false alarm as reporting such a change when no change occurred. The 

resulting d’ scores from all set sizes (i.e., 2, 4, 6) will be used to compute an average d’ score. 

Our reasoning is that replicating the results using both K score (as the primary analysis) and 

d' (as an additional analysis) will provide stronger evidence for the observed effect, as it would 

demonstrate that the results are not solely dependent on the characteristics of the K measure.  
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Pilot data 

 
We conducted a pilot study to test the feasibility of proposed methods, to implement sanity 

checks, and to prepare analysis code for the main analyses. First, we demonstrated the 

feasibility of the estimation of the individual’s amplitude threshold for 1° horizontal eye 

movement, as described in the exclusion criteria section. To determine the individual 

participant’s exclusion amplitude threshold, we have conducted a separate horizontal EOG 

saccade calibration task. Participants conducted saccades to the target location which 

appeared either 3° or 6° away from the fixation cross in the center. The pilot study indicates 

that the estimation of individual’s amplitude threshold can be estimated (Figure 2).  

 

Figure 2. A: The mean amplitudes for the left (red) and right (blue) saccades are displayed for an 

individual subject. The black lines indicate the single trials. B: The estimation of the amplitude threshold 

for 1° visual angle for an individual subject is illustrated.   

 
Subsequently, the pilot study investigated the outcome-neutral tests as well as set size effects 

in the color contrast change detection task. Because of the small sample size (N = 3), the pilot 

dataset has insufficient power (see Power Analysis section) to conduct robust statistical 

analyses. Therefore, the pilot data results are reported here as descriptive results and 

presented exclusively for illustrative purposes. We refrain from any interpretation based on 

these data, which should be based on the sample of the actual study. The data acquisition, 

preprocessing, and analysis parameters were identical to those described for the planned 

study. Pilot data analysis showed the feasibility of the proposed analysis in the main study. 

First, we demonstrated the presence of an asymmetry between contra- or ipsilateral electrode 
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clusters time-locked to the memory array (i.e., outcome-neutral test) (see Figure 3A). In 

addition, pilot data indicate descriptive differences in CDA amplitude between set size 2 and 

set size 4 and between set size 2 and 6 respectively (Figure 3B).  

 

 
Figure 3: A: Grand averaged ERP waveforms time-locked to the memory array averaged across the 

lateral occipital and posterior parietal electrode sites. Note that, by convention, negative voltage is 

plotted upwards. B: lateralized ERPs are plotted for set size 2, 4 and 6. 
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