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Abstract

Remarkably, human brains have the ability to accurately perceive and process the real-world
size of objects, despite vast differences in distance and perspective. While previous studies
have delved into this phenomenon, distinguishing this ability from other visual perceptions,
like depth, has been challenging. Using the THINGS EEG2 dataset with high time-resolution
human brain recordings and more ecologically valid naturalistic stimuli, our study uses an
innovative approach to disentangle neural representations of object real-world size from
retinal size and perceived real-world depth in a way that was not previously possible.
Leveraging this state-of-the-art dataset, our EEG representational similarity results reveal a
pure representation of object real-world size in human brains. We report a representational
timeline of visual object processing: object real-world depth appeared first, then retinal size,
and finally, real-world size. Additionally, we input both these naturalistic images and object-
only images without natural background into artificial neural networks. Consistent with the
human EEG findings, we also successfully disentangled representation of object real-world
size from retinal size and real-world depth in all three types of artificial neural networks
(visual-only ResNet, visual-language CLIP, and language-only Word2Vec). Moreover, our
multi-modal representational comparison framework across human EEG and artificial neural
networks reveals real-world size as a stable and higher-level dimension in object space
incorporating both visual and semantic information. Our research provides a detailed and
clear characterization of the object processing process, which offers further advances and
insights into our understanding of object space and the construction of more brain-like visual
models.
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This useful study measured how information about object categories varies with
time in EEG responses to object images in human participants and found that real-
world size, retinal size, and real-world depth are represented at different time points
in the response. The evidence presented is incomplete and can be further
strengthened by removing confounds related to other covarying properties such as
semantic categories, and by clarifying the partial correlations that are used to
support the conclusions.

https://doi.org/10.7554/eLife.98117.1.sa3

Introduction

Imagine you are viewing an apple tree while walking around an orchard: as you change your
perspective and distance, the retinal size of the apple you plan to pick varies, but you still perceive
the apple as having a constant real-world size. How do our brains extract object real-world size
information during object recognition to allow us to understand the complex world? Behavioral
studies have demonstrated that perceived real-world size is represented as an object physical
property, revealing same-size priming effects (Setti et al., 2008 @), familiar-size stroop effects
(Konkle & Oliva, 2012a(%; Long & Konkle, 2017(%), and canonical visual size effects (Chen et al.,
2022 3; Konkle & Oliva, 2011 &). Human neuroimaging studies have also found evidence of object
real-world size representation (Huang et al., 2022 (3; S.-M. Khaligh-Razavi et al., 2018 @2 ; Konkle &
Caramazza, 20133 ; Konkle & Oliva, 2012b(2; Luo et al., 2023 (2; Quek et al., 2023Z; R. Wang et al.,

representation.

However, previous studies on object real-world size have faced several challenges. Firstly, the
perception of an object’s real-world size is closely related to the perception of its real-world
distance in depth. For instance, imagine you are looking at photos of an apple and a basketball: if
the two photos were zoomed in such that the apple and the basketball filled the same exact retinal
(image) size, you could still easily perceive that the apple is the physically smaller real-world
object. But, you would simultaneously infer that the apple is thus located closer to you (or the
camera) than the basketball. In previous neuroimaging studies of perceived real-world size
(Huang et al., 2022 & ; Konkle & Caramazza, 2013 ; Konkle & Oliva, 2012b ), researchers
presented images of familiar objects zoomed and cropped such that they occupied the same
retinal size, finding that neural responses in ventral temporal cortex reflected the perceived real-
world size (e.g. an apple smaller than a car). However, while they controlled the retinal size of
objects, the intrinsic correlation between real-world size and real-world depth in these images
meant that the influence of perceived real-world depth could not be entirely isolated when
examining the effects of real-world size. This makes it difficult to ascertain whether their results
were driven by neural representations of perceived real-world size and/or perceived real-world
depth. MEG and EEG studies focused on temporal processing of object size representations (S.-M.
Khaligh-Razavi et al., 2018 2 ; R. Wang et al., 2022 2) have been similarly susceptible to this
limitation. Indeed, one recent behavioral study (Quek et al., 2023 (%) provided evidence that
perceived real-world depth could influence real-world size representations, further illustrating the
necessity of investigating pure real-world size representations in the brain. Secondly, the stimuli
used in these studies were cropped object stimuli against a plain white or grey background, which
are not particularly naturalistic. More and more studies and datasets have highlighted the
important role of naturalistic context in object recognition (Allen et al., 2022 3; Gifford et al.,
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2022 @; Grootswagers et al., 2022 3 ; Hebart et al., 2019 ; Stoinski et al., 2023 ). In ecological
contexts, inferring the real-world size/distance of an object likely relies on a combination of
bottom-up visual information and top-down knowledge about canonical object sizes for familiar
objects. Incorporating naturalistic background context in experimental stimuli may produce more
accurate assessments of the relative influences of visual shape representations (Bracci et al.,

2017 3; Bracci & Op de Beeck, 2016 & ; Proklova et al., 2016 (@) and higher-level semantic
information (Doerig et al., 2022 @; Huth et al., 2012(%; A. Y. Wang et al., 2022 (@). Furthermore,
most previous studies have tended to categorize size rather broadly, such as merely differentiating
between big and small objects (S.-M. Khaligh-Razavi et al., 2018 3 ; Konkle & Oliva, 2012b % ; R.
Wang et al., 2022 @) or dividing object size into seven levels from small to big. To more finely
investigate the representation of object size in the brain, it may be necessary to obtain a more
continuous measure of size for a more detailed characterization.

Certainly, a minority of fMRI studies have attempted to utilize natural images and also engaged in
more detailed size measurements to more precisely explore the encoding of object real-world size
in different brain areas (Luo et al., 2023 ; Troiani et al., 2014 %). However, no study has yet
comprehensively overcome all the challenges and unfolded a clear processing timeline for object
retinal size, real-world size, and real-world depth in human visual perception.

In the current study, we overcome all these challenges by combining high temporal-resolution
EEG, naturalistic images, artificial neural networks, and novel computational methods to
distinguish the neural representations of object real-world size, retinal size, and real-world depth.
We applied our novel computational approach to an open EEG dataset, THINGS EEG2 (Gifford et

objects that vary in real-world size, depth, and retinal size. This allows us to employ a multi-model
representational similarity analysis to investigate pure representations of object real-world size,
partialing out — and simultaneously exploring — these confounding features.

Secondly, we are able to explore the neural dynamics of object feature processing in a more
ecological context based on natural images in human object recognition. Thirdly, instead of
dividing object size into several levels, we applied more detailed behavioral measurements from
an online size rating task to obtain a more continuous measure to more finely decode the
representation of object size in the brain.

We first focus on unfolding the neural dynamics of pure object real-world size representations.
The temporal resolution of EEG allows us the opportunity to investigate the representational
timecourse of visual object processing, asking whether processing of perceived object real-world
size precedes or follows processing of perceived depth, if these two properties are in fact
processed independently.

We then attempt to further explore the underlying mechanisms of how human brains process
object size and depth in natural images by integrating artificial neural networks (ANNSs). In the
domain of cognitive computational neuroscience, ANNs offer a complementary tool to study visual
object recognition, and an increasing number of studies support that ANNs exhibit representations
similar to human visual systems (Cichy et al., 2016 % ; Guclu & van Gerven, 2015 ; Yamins et al.,
2014 (Z; Yamins & DiCarlo, 2016 (%). Indeed, a recent study found that ANNs also represent real-
world size (Huang et al., 2022 (2); however, their use of a fixed retinal size image dataset with the
same cropped objects as described above makes it similarly challenging to ascertain whether the
results reflected real-world size and/or depth. Additionally, some recent work indicates that
artificial neural networks incorporating semantic embedding and multimodal neural components
might more accurately reflect human visual representations within visual areas and even the
hippocampus, compared to vision-only networks (Choksi, Mozafari, et al., 2022 2; Choksi,
Vanrullen, et al., 2022 (Z; Conwell et al., 2022 % ; Doerig et al., 2022 2 ; Jozwik et al., 2023&; A. Y.
Wang et al., 2022 @). Given that perception of real-world size may incorporate both bottom-up
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visual and top-down semantic knowledge about familiar objects, these models offer yet another
novel opportunity to investigate this question. Utilizing both visual and visual-semantic models, as
well as different layers within these models, ANNs provide us the approach to extract various
image features, low-level visual information from early layers and higher-level information
including both visual and semantic features from late layers.

The novel computational approach by cross-modal representational comparisons we take with the
current study allows us to compare how representations of perceived real-world size and depth
emerge in both human brains and artificial neural networks. Unraveling the internal
representations of object size and depth features in both human brains and ANNs provides us a
deeper approach to not only explore whether both biological and artificial systems represent
object real-world size, along with retinal size and real-world depth features, but also investigate
possible mechanisms of object real-world size representations.

Materials and Methods

Experimental design, stimuli images and EEG data

We utilized the open dataset from THINGS EEG2 (Gifford et al., 2022 %), which includes EEG data
from 10 healthy human subjects (age=28.5+4, 8 female and 2 male) in a rapid serial visual
presentation (RSVP) paradigm with an orthogonal target detection task to ensure participants paid
attention to the visual stimuli. For each trial, subjects viewed one image (sized 500 x 500 pixels) for
100ms. Each subject viewed 16740 images of objects on a natural background for 1854 object
concepts from THINGS dataset (Hebart et al., 2019). For the current study, we used the ‘test’
dataset portion, which includes 16000 trials per subject corresponding to 200 images (200 object
concepts, one image per concept) with 80 trials per image. Before inputting the images to the
ANNSs, we reshaped image sizes to 224 x 224 pixels and normalized the pixel values of images to
ImageNet statistics.

EEG data were collected using a 64-channel EASYCAP and a BrainVision actiCHamp amplifier. We
used already pre-processed data from 17 channels (01, Oz, 02, PO7, PO3, POz, PO4, POS, P7, P5, P3,
P1, Pz, P2) overlying occipital and parietal cortex. We re-epoched EEG data ranging from 100ms
before stimulus onset to 300ms after onset with a sample frequency of 100Hz. Thus the shape of
our EEG data matrix for each trial was 17 channels x 40 time points.

ANN models

pretrained on ImageNet), and one multi-modal (visual+semantic) model (CLIP with a ResNet-101
backbone (Radford et al., 2021 @) pretrained on YFCC-15M). We used THINGSvision (Muttenthaler

late layers (early layer: second convolutional layer; late layer: last visual layer) for the images.

Word2Vec model

To approximate the non-visual, pure semantic space of objects, we also applied a Word2Vec model,
a natural language processing model for word embedding, pretrained on Google News corpus
(Mikolov et al., 2013 @), which contains 300-dimensional vectors for 3 million words and phrases.
We input the words for each image’s object concept (pre-labeled in THINGS dataset: Hebart et al.,

obtain Word2Vec feature vectors for the objects in images.
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Representational dissimilarity matrices (RDMs)

To conduct RSA across human EEG, artificial models, and our hypotheses corresponding to
different visual features, we first computed representational dissimilarity matrices (RDMs) for
different modalities (Figure 2(%). The shape of each RDM was 200 x 200, corresponding to
pairwise dissimilarity between the 200 images. We extracted the 19900 cells from the upper half of
the diagonal of each RDM for subsequent analyses.

Neural RDMs

From the EEG signal, we constructed timepoint-by-timepoint neural RDMs for each subject with
decoding accuracy as the dissimilarity index (Figure 2A ). We first conducted timepoint-by-
timepoint classification-based decoding for each subject and each pair of images (200 images,
19900 pairs in total). We applied linear Support Vector Machine (SVM) to train and test a two-class
classifier, employing a 5-time 5-fold cross-validation method, to obtain an independent decoding
accuracy for each image pair and each timepoint. Therefore, we ultimately acquired 40 (1 per
timepoint) EEG RDMs for each subject.

Hypothesis-based (HYP) RDMs

We constructed three hypothesis-based RDMs reflecting the different types of visual object
properties in the naturalistic images (Figure 2B (Z): Real-World Size RDM, Retinal Size RDM, and
Real-World Depth RDM. We constructed these RDMs as follows:

¢ (1) For Real-World Size RDM, we obtained human behavioral real-world size ratings of
each object concept from the THINGS+ dataset (Stoinski et al., 2022). In the THINGS+
dataset, 2010 participants (different from the subjects in THINGS EEG2) did an online size
rating task and completed a total of 13024 trials corresponding to 1854 object concepts. The
range of possible size ratings was from 0 to 519 in their online size rating task, with the
actual mean ratings across subjects ranging from 100.03 (‘sand’) to 423.09 (‘subway’). We
used these ratings as the perceived real-world size measure of the object concept pre-
labeled in THINGS dataset (Hebart et al., 2019 @) for each image. We then constructed the
representational dissimilarity matrix by calculating the absolute difference between
perceived real-world size ratings for each pair of images.

e (2) For Retinal Size RDM, we applied Adobe Photoshop (Adobe Inc., 2019) to crop objects
corresponding to object labels from images manually, obtaining a rectangular region that
precisely contains a single object, then measured the diagonal length of the segmented
object in pixels as the retinal size measure (Konkle & Oliva, 2011 ). Due to our calculations
being at the object level, if there were more than one same objects in an image, we cropped
the most complete one to get more accurate retinal size. We then constructed the RDM by
calculating the absolute difference between measured retinal size for each pair of images.

e (3) For Real-World Depth RDM, we calculated the perceived depth based on the measured
retinal size index and behavioral real-world size ratings, such that real-world depth / visual
image depth = real-world size / retinal size. Since visual image depth (viewing distance) is
held constant across images in the task, real-world depth is proportional to real-world size
/ retinal size. We then constructed the RDM by calculating the absolute difference between
real-world depth index for each pair of images.

ANN (and Word2Vec) model RDMs

We constructed a total of five model-based RDMs (Figure 2C 2). Our primary analyses used four
ANN RDMs, corresponding to the early and late layers for both ResNet and CLIP (Figure S12). We
also calculated a single Word2Vec RDM for the pure semantic analysis (Figure S2 ). For each
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RDM, we got the dissimilarities by calculating 1 — Pearson correlation coefficient between each
pair of two vectors of the model features corresponding to two input images.

Representational similarity analyses (RSA) and statistical analyses
We conducted cross-modal representational similarity analyses between the three types of RDMs
(Figure 2@). All decoding and RSA analyses were implemented using NeuroRA (Lu & Ku, 2020 @).

EEG x ANN (or W2V) RSA

To measure the representational similarity between human brains and ANNs and confirm that
ANNSs have significantly similar representations to human brains, we calculated the Spearman
correlation between the 40 timepoint-by-timepoint EEG neural RDMs and the 4 ANN RDMs
corresponding to the representations of ResNet early layer, ResNet late layer, CLIP early layer,
CLIP late layer, respectively. We also calculated temporal representational similarity between
human brains (EEG RDMs) and the Word2Vec model RDM. Cluster-based permutation tests were
conducted to determine the time windows of significant representational similarity. First, we
performed one-sample t-tests (one-tailed testing) against zero to get the t-value for each timepoint,
and extracted significant clusters. We computed the clustering statistic as the sum of t-values in
each cluster. Then we conducted 1000 permutations of each subject’s timepoint-by-timepoint
similarities to calculate a null distribution of maximum clustering statistics. Finally, we assigned
cluster-level p-values to each cluster of the actual representational timecourse by comparing its
cluster statistic with the null distribution. Time-windows were determined to be significant if the
p-value of the corresponding cluster was <0.05.

EEG x HYP RSA

To evaluate how human brains temporally represent different visual features, we calculated the
timecourse of representational similarity between the timepoint-by-timepoint EEG neural RDMs
and the three hypothesis-based RDMs. To avoid correlations between hypothesis-based RDMs
(Figure 3A[@) influencing comparison results, we calculated partial correlations with one-tailed
test against the alternative hypothesis that the partial correlation was positive (greater than zero).
Cluster-based permutation tests were performed as described above to determine the time
windows of significant representational similarity. In addition, we conducted peak latency
analysis to determine the latency of peak representational similarity for each type of visual
information with the EEG signal. We restricted the time-window to the significant (partial)
correlation time-window for real-world size, retinal size, and real-world depth, and got the
individual peak timepoint corresponding to the highest partial correlation. Paired t-tests (two-
tailed) were conducted to assess the statistical differences in peak latencies between different
visual features.

ANN (or W2V) x HYP RSA

To evaluate how different visual information is represented in ANNs, we calculated
representational similarity between the ANN RDMs and hypothesis-based RDMs. As in the EEG x
HYP RSA, we calculated partial correlations to avoid correlations between hypothesis-based RDMs.
We also calculated the partial correlations between hypothesis-based RDMs and the Word2Vec
RDM. To determine statistical significance, we conducted a bootstrap test. We shuffled the order of
the cells above the diagonal in each ANN (or Word2Vec) RDM 1000 times. For each iteration, we
calculated partial correlations corresponding to the three hypothesis-based RDMs. This produced a
1000-sample null distribution for each HYP x ANN (or W2V) RSA. We hypothesized that if the real
similarity was higher than the 95% confidence interval of the null distribution, it indicated that
ANN (or W2V) features validly encoded the corresponding visual feature.
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Additionally, to explore how the naturalistic background present in the images might influence
object real-world size, retinal size, and real-world depth representations, we conducted another
version of the analysis by inputting cropped object images without background into ANN models
to obtain object-only ANN RDMs (Figure S3(%). Then we performed the same ANN x HYP
similarity analysis to calculate partial correlations between the hypothesis-based RDMs and
object-only ANN RDM. (We didn’t conduct the similarity analysis between timepoint-by-timepoint
EEG neural RDMs with subjects viewing natural images and object-only ANN RDMs due to the
input differences.)

Data and code accessibility

EEG data and images from THINGS EEG2 data are publicly available on OSF (https://osf.io/3jk45
/@). All Python analysis scripts will be available post-publication on GitHub (https://github.com
/ZitongLu1996/RWsize @),

Results

We conducted a cross-modal representational similarity analysis (Figures 1#-2(%, see Method
section for details) comparing the patterns of human brain activation (timepoint-by-timepoint
decoding of EEG data) while participants viewed naturalistic object images, the output of different
layers of artificial neural networks and semantic language models fed the same stimuli (ANN and
Word2Vec models), and hypothetical patterns of representational similarity based on behavioral
and mathematical measurements of different visual image properties (perceived real-world object
size, displayed retinal object size, and perceived real-world object depth).

Dynamic representations of object size and depth in human brains
To explore if and when human brains contain distinct representations of perceived real-world
size, retinal size, and real-world depth, we constructed timepoint-by-timepoint EEG neural RDMs
(Figure 2A (@), and compared these to three hypothesis-based RDMs corresponding to different
visual image properties (Figure 2B ). Firstly, we confirmed that the hypothesis-based RDMs were
indeed correlated with each other (Figure 3A @), and without accounting for the confounding
variables, Spearman correlations between the EEG and each hypothesis-based RDM revealed
overlapping periods of representational similarity (Figure 3B (). In particular, representational
similarity with real-world size (from 90 to 120ms and from 170 to 240ms) overlapped with the
significant time-windows of other features, including retinal size from 70 to 210ms, and real-world
depth from 60 to 130ms and from 180 to 230ms. But critically, with the partial correlations, we
isolated their independent representations. The partial correlation results reveal a pure
representation of object real-world size in the human brain from 170 to 240ms after stimulus
onset, independent from retinal size and real-world depth, which showed significant
representational similarity at different time windows (retinal size from 90 to 200ms, and real-
world depth from 60 to 130ms and 270 to 300ms) (Figure 3D (@).

Peak latency results showed that neural representations of real-world size, retinal size and real-
world depth reached their peaks at different latencies after stimulus onset (real-world depth:
~87ms, retinal size: ~138ms, real-world size: ~206ms, Figure 3C(%). The representation of real-
word size had a significantly later peak latency than that of both retinal size (t=4.2950, p=.0020)
and real-world depth (t=18.5847, p<.001). And retinal size representation had a significantly later
peak latency than real-world depth (t=3.7229, p=.0047). These varying peak latencies imply an
encoding order for distinct visual features, transitioning from real-world depth through retinal
size, and then to real-world size.
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Based on Human EEG

200 images

HYP RDMs

3 RDMs:
Real-World Size
Retinal Size
Real-World Depth

ANN & W2V RDMs

5 RDMs:
ResNet (early)
ResNet (late)
CLIP (early)
CLIP (late)

. Word2Vec

ANN (or W2V) x HYP

To explore how different models represent
different visual features

Based on hypotheses Based on models

Figure 1

Overview of our analysis pipeline including constructing three types of RDMs and conducting comparisons between them.
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Figure 2

Methods for calculating neural (EEG), hypothesis-based (HYP), and artificial neural network (ANN) & semantic language
processing (Word2Vec, W2V) model-based representational dissimilarity matrices (RDMs). (A) Steps of computing the neural
RDMs from EEG data. EEG analyses were performed in a time-resolved manner on 17 channels as features. For each time t,
we conducted pairwise cross-validated SVM classification. The classification accuracy values across different image pairs
resulted in each 200 x 200 RDM for each time point. (B) Calculating the three hypothesis-based RDMs: Real-World Size RDM,
Retinal Size RDM, and Real-World Depth RDM. Real-world size, retinal size, and real-world depth were calculated for the
object in each of the 200 stimulus images. The number in the bracket represents the rank (out of 200, in ascending order)

based on each feature corresponding to the object in each stimulus image

(e.g. “ferry” ranks 197" in real-world size from

small to big out of 200 objects). The connection graph to the right of each RDM represents the relative representational
distance of three stimuli in the corresponding feature space. (C) Steps of computing the ANN and Word2Vec RDMs. For ANNs,
the inputs were the resized images, and for Word2Vec, the inputs were the words of object concepts. For clearer visualization,

the shown RDMs were separately histogram-equalized (percentile units).
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Figure 3

Cross-modal RSA results. (A) Similarities (Spearman correlations) between three hypothesis-based RDMs. Asterisks indicate a

significant similarity, p<.05. (B) Representational similarity time courses (full Spearman correlations) between EEG neural
RDMs and hypothesis-based RDMs. (C) Temporal latencies for peak similarity (partial Spearman correlations) between EEG
and the 3 types of object information. Error bars indicate +SEM. Asterisks indicate significant differences across conditions

(p<.05); (D) Representational similarity time courses (partial Spearman correlations) between EEG neural RDMs and
hypothesis-based RDMs. (E) Representational similarities (partial Spearman correlations) between the four ANN RDMs and

hypothesis-based RDMs of real-world depth, retinal size, and real-world size. Asterisks indicate significant partial correlations

(bootstrap test, p<.05). (F) Representational similarity time courses (Spearman correlations) between EEG neural RDMs and

ANN RDMs. Color-coded small dots at the top indicate significant timepoints (cluster-based permutation test, p<.05). Shaded

area reflects +SEM.
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Artificial neural networks also reflect distinct

representations of object size and depth

To test how ANNs process these visual properties, we input the same stimulus images into ANN
models and got their latent features from early and late layers (Figure 2C(%), and then conducted
comparisons between the ANN RDMs and hypothesis-based RDMs. Parallel to our findings of
dissociable representations of real-world size, retinal size, and real-world depth in the human
brain signal, we also found dissociable representations of these visual features in ANNs (Figure
3E@). Our partial correlation RSA analysis showed that early layers of both ResNet and CLIP had
significant real-world depth and retinal size representations, whereas the late layers of both ANNs
were dominated by real-world size representations, though there was also weaker retinal size
representation in the late layer of ResNet and real-world depth representation in the late layer of
CLIP. The detailed statistical results are shown in Table S1(%.

Thus, ANNs provide another approach to understand the formation of different visual features,
offering convergent results with the EEG representational analysis, where retinal size was
reflected most in the early layers of ANNs, while object real-world size representations didn’t
emerge until late layers of ANNs, consistent with a potential role of higher-level visual
information, such as the semantic information of object concepts.

Finally, we directly compared the timepoint-by-timepoint EEG neural RDMs and the ANN RDMs
(Figure 3F@). The early layer representations of both ResNet and CLIP were significantly
correlated with early representations in the human brain (early layer of ResNet: 40-280ms, early
layer of CLIP: 50-130ms and 160-260ms), while the late layer representations of two ANNs were
significantly correlated with later representations in the human brain (late layer of ResNet: 80-
300ms, late layer of CLIP: 70-300ms). This pattern of early-to-late correspondence aligns with
previous findings that convolutional neural networks exhibit similar hierarchical representations
to those in the brain visual cortex (Cichy et al., 2016 (% ; GUclu & van Gerven, 2015 ; Kietzmann et
al., 20193; Yamins & DiCarlo, 2016 2): that both the early stage of brain processing and the early
layer of the ANN encode lower-level visual information, while the late stage of the brain and the
late layer of the ANN encode higher-level visual information. Also, human brain representations
showed a higher similarity to the early layer representation of the visual model (ResNet) than to
the visual-semantic model (CLIP) at an early stage. Conversely, human brain representations
showed a higher similarity to the late layer representation of the visual-semantic model (CLIP)
than the visual model (ResNet) at a late stage. Interestingly, the peaks of significant time windows
for the EEG x HYP RSA also correspond with the peaks of the EEG x ANN RSA timecourse (Figure
3D,F@).

Real-world size as a stable and higher-

level dimension in object space

An important aspect of the current study is the use of naturalistic visual images as stimuli, in
which objects were presented in their natural contexts, as opposed to cropped images of objects
without backgrounds. In natural images, background can play an important role in object
perception. How dependent are the above results on the presence of naturalistic background
context? To investigate how image context influences object size and depth representations, we
next applied a reverse engineering method, feeding the ANNs with modified versions of the
stimulus images containing cropped objects without background, and evaluating the ensuing ANN
representations compared to the same original hypothesis-based RDMs. If the background
significantly contributes to the formation of certain feature representations, we may see some
encoding patterns in ANNs disappear when the input only includes the pure object but no
background.
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Compared to results based on images with background, the ANNs based on cropped-object
modified images showed weaker overall representational similarity for all features (Figure 42).
In the early layers of both ANNs, we now only observed significantly preserved retinal size
representations (which is a nice validity check, since retinal size measurements were based purely
on the physical object dimensions in the image, independent of the background). Real-world depth
representations were almost totally eliminated, with only a small effect in the late layer of ResNet.
However, we still observed a preserved pattern of real-world size representations, with significant
representational similarity in the late layers of both ResNet and CLIP, and not in the early layers.
The detailed statistical results are shown in Table S2 . Even though the magnitude of
representational similarity for object real-world size decreased when we removed the
background, this high-level representation was not entirely eliminated. This finding suggests that
background information does indeed influence object processing, but the representation of real-
world size seems to be a relatively stable higher-level feature. On the other hand, representational
formats of real-world depth changed when the input lacked background information. The
deficiency of real-world depth representations in early layers, compared to when using full-
background images, might suggest that the human brain typically uses background information to
estimate object depth, though the significant effect in the late layer of ResNet in background-
absent condition might also suggest that the brain (or at least ANN) has additional ability to
integrate size information to infer depth when there is no background.

The above results reveal that real-world size emerges with later peak neural latencies and in the
later layers of ANNs, regardless of image background information. Is this because real-world size
is a more conceptual-level dimension in object semantic space? If so, we might expect it to be
driven not only by higher-level visual information, but also potentially by purely semantic
information about familiar objects. To test this, we extracted object names from each image and
input the object names into a Word2Vec model to obtain a Word2Vec RDM (Figure S2(®), and then
conducted a partial correlation RSA comparing the Word2Vec representations with the hypothesis-
based RDMs (Figure 5A%). The results showed a significant real-world size representation
(r=0.1871, p<0.001) but no representation of retinal size (r=-0.0064, p=0.8148) or real-world depth
(r=-0.0040, p=.7151) from Word2Vec. Also, the significant time-window (90-300ms) of similarity
between Word2Vec RDM and EEG RDMs (Figure 5B @) contained the significant time-window of
EEG x real-world size representational similarity (Figure 3B @).

Both the reverse engineering manipulation and Word2Vec findings corroborate that object real-
world size representation, unlike retinal size and real-world depth, emerges in both image- and
semantic-level in object space.

Discussion

Our study applied computational methods to distinguish the representations of objects’ perceived
real-world size, retinal size, and perceived real-world depth features in both human brains and
ANNSs. Consistent with prior studies reporting real-world size representations (Huang et al.,

2022 3; S.-M. Khaligh-Razavi et al., 20187 ; Konkle & Caramazza, 2013 @ ; Konkle & Oliva, 2012b (%;
Luo et al., 2023 @ ; Quek et al., 2023 3; R. Wang et al., 2022 2), we found that both human brains
and ANNSs contain significant information about real-world size. Critically, compared to the prior
studies, our study offers several important theoretical and methodological advances: (a) we
eliminated the confounding impact of perceived real-world depth (in addition to retinal size) on
the real-world size representation; (b) we conducted analyses based on more ecologically valid
naturalistic images; (c) we obtained precise feature values for each object in every image, instead
of simply dividing objects into 2 or 7 coarse categories; and (d) we utilized a multi-modal, partial
correlation RSA that combines EEG, hypothesis-based models, and ANNs. This novel approach
allowed us to investigate representational time courses and reverse engineering manipulations in
unparalleled detail. By integrating EEG data with hypothesis-based models and ANNs, this method
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Figure 4

Contribution of image backgrounds to object size and depth representations. Representational similarity results (partial
Spearman correlations) between ANNSs fed inputs of cropped object images without backgrounds and the hypothesis-based
RDMs. Stars above bars indicate significant partial correlations (bootstrap test, p<.05).
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offers a powerful tool for dissecting the neural underpinnings of object size and depth perception
in more ecological contexts, which enriches our comprehension of the brain’s representational
mechanisms.

Using EEG we uncovered a representational timeline for visual object processing, with object real-
world depth information represented first, followed by retinal size, and finally real-world size.
While size and depth are highly correlated to each other, our results suggest that the human brain
indeed has dissociated time courses and mechanisms to process them. The later representation
time-window for object real-world size may suggest that the brain requires more sophisticated,
higher-level information to form this representation, perhaps incorporating semantic and/or
memory information about familiar objects, which was corroborated by our ANN and Word2Vec
analyses. These findings also align with a recent fMRI study (Luo et al., 2023 (?) using natural
images to explore the neural selectivity for real-world size, finding that low-level visual
information could hardly account for neural size preferences, although that study did not consider
covariables like retinal size and real-world depth.

In contrast to the later-emerging real-world size representations, it makes sense that retinal size
representations could be processed more quickly based on more fundamental, lower-level
information such as shape and edge discrimination. The intermediate latency for real-world depth
processing suggests that this feature may precede real-world size processing. Additionally, there
was a secondary, albeit substantially later, significant depth representation time-window, which
might indicate that our brains also have the ability to integrate object retinal size and higher-level
real-size information to form the final representation of real-world depth. Our comparisons
between human brains and artificial models and explorations on ANNs and Word2Vec offer
further insights and suggest that although real-world object size and depth are closely related,
object real-world size appears to be a more stable and higher-level dimension.

The concept of ‘object space’ in cognitive neuroscience research is crucial for understanding how
various visual features of objects are represented. Historically, various visual features have been
considered important dimensions in constructing object space, including animate-inanimate
(Kriegeskorte et al., 2008 (2 ; Naselaris et al., 2012 (@), spikiness (Bao et al., 2020 @ ; Coggan & Tong,
2023 ), and physical appearance (Edelman et al., 1998 ). In this study, we focus on one
particular dimension, real-world size (Huang et al., 2022 @ ; Konkle & Caramazza, 20132 ; Konkle &
Oliva, 2012b @). How we generate neural distinctions of different object real-world size and where
this ability comes from remain uncertain. Some previous studies found that object shape rather
than texture information could trigger neural size representations (Huang et al., 20224 ; Long et
al., 20162, 20182 ; R. Wang et al., 2022 (%). Our results attempt to further advance their findings,
that object real-world size is a stable and higher-level dimension substantially driven by object

semantics in object space.

Increasingly, research has begun to use ANNSs to study the mechanisms of object recognition
(Ayzenberg et al., 2023 @ ; Cichy & Kaiser, 20192 ; Doerig et al., 2023 ; Kanwisher et al., 2023 3).
We can explore how the human brain processes information at different levels by comparing
brain activity with models (Cichy et al., 2016 (2 ; S. M. Khaligh-Razavi & Kriegeskorte, 2014 (Z;
Kuzovkin et al., 2018 (3; Xie et al., 2020 @), and we can also analyze the representation patterns of
the models with some specific manipulations and infer potential processing mechanisms in the
brain (Golan et al., 2020 (% ; Huang et al., 2022(%; Lu & Ku, 2023 (Z; Xu et al., 2021 @). In current
study, our comparisons result between EEG signals and different ANNs showed that the visual
model’s early layer had a higher similarity to the brain in the early stage, while the visual-
semantic model’s late layer had a higher similarity to the brain in the late stage. However, for the
representation of objects, partial correlation results for different ANNs didn’t demonstrate the
superiority of the multi-modal model at late layers. This might be due to models like CLIP, which
contain semantic information, learning more complex image descriptive information (like the
relationship between object and the background in the image). Real-world size might be a
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semantic dimension of the object itself, and its representation does not require overall semantic
descriptive information of the image. In contrast, retinal size and real-world depth could rely on
image background information for estimation, thus their representations in the CLIP late layer
disappeared when input images had only pure object but no background.

Building on the promising findings of our study, future work may further delve into the detailed
processes of object processing and object space. One important problem to solve is how real-world
size interacts with other object dimensions in object space. In addition, our approach could be
used with future studies investigating other influences on object processing, such as how different
task conditions impact and modulate the processing of various visual features.

Moreover, we must also emphasize that in this study, we were concerned with perceived real-
world size and depth reflecting a perceptual estimation of our world, which are slightly different
from absolute physical size and depth. The differences in brain encoding between perceived and
absolute physical size and depth require more comprehensive measurements of an object’s
physical attributes for further exploration. Also, we focused on perceiving depth and size from 2D
images in this study, which might have some differences in brain mechanism compared to
physically exploring the 3D world. Nevertheless, we believe our study offers a valuable
contribution to object recognition, especially the encoding process of object real-world size in
natural images.

In conclusion, we used computational methods to distinguish the representations of real-world
size, retinal size, and real-world depth features of objects in ecologically natural images in both
human brains and ANNs. We found an unconfounded representation of object real-world size,
which emerged at later time windows in the human EEG signal and at later layers of artificial
neural networks compared to real-world depth, and which also appeared to be preserved as a
stable dimension in object space. Thus, although size and depth properties are closely correlated,
the processing of perceived object size and depth may arise through dissociated time courses and
mechanisms. Our research provides a detailed and clear characterization of the object processing
process, which offers further advances and insights into our understanding of object space and
the construction of more brain-like visual models.
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Figure S1.

Four ANN RDMs of ResNet early layer, ResNet late layer, CLIP early layer, and CLIP late later.
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Figure S3.

Four ANN RDMs with inputs of cropped object images without background of ResNet early layer, ResNet late layer, CLIP early

layer, and CLIP late later.
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Table S1
Statistical results of similarities (partial Spearman correlations)
between four ANN RDMs and three hypothesis-based RDMs.
ANN x HYP ResNet (early) CLIP (early) ResNet (late) CLIP (late)
Real-World depth r=.0330, p<.001 r=.0262, p<.001 r=-.0513, p=1 r=.0278, p<.001
Retinal Size r=.0618, p<.001 r=.0730, p<.001 r=.0221, p<.001 r=.0058, p=.1788
Real-World Size r=-.0330, p=1 r=-.0027, p=.8710  r=0.2497, p<.001 r=0.2378, p<.001
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ANN (obj-only imgs)
ResNet (early) CLIP (early) ResNet (late) CLIP (late)

x HYP
Real-World depth

r=-.0109, p=9382  r=-.0086, p=.8862 r=.0183, p=.0049 r=-.0176, p=9934

r=-.0032, p=.6725  1=-.0031, p=.6705

r=.0323, p<.001 r=.0315, p<.001
r=.0154, p=.0149

Retinal Size
r=.0084, p=.1193 r=.0402, p<.001

Real-World Size r=.0022, p=.3781

Table S2

Statistical results of similarities (partial Spearman correlations) between four ANN RDMs
with inputs of cropped object images without background and three hypothesis-based RDMs.
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Reviewer #1 (Public Review):

Lu & Golomb combined EEG, artificial neural networks, and multivariate pattern analyses to
examine how different visual variables are processed in the brain. The conclusions of the
paper are mostly well supported, but some aspects of methods and data analysis would
benefit from clarification and potential extensions.

The authors find that not only real-world size is represented in the brain (which was known),
but both retinal size and real-world depth are represented, at different time points or
latencies, which may reflect different stages of processing. Prior work has not been able to
answer the question of real-world depth due to the stimuli used. The authors made this
possible by assessing real-world depth and testing it with appropriate methodology,
accounting for retinal and real-world size. The methodological approach combining
behavior, RSA, and ANNSs is creative and well thought out to appropriately assess the research
questions, and the findings may be very compelling if backed up with some clarifications and
further analyses.

The work will be of interest to experimental and computational vision scientists, as well as
the broader computational cognitive neuroscience community as the methodology is of
interest and the code is or will be made available. The work is important as it is currently not
clear what the correspondence between many deep neural network models and the brain is,
and this work pushes our knowledge forward on this front. Furthermore, the availability of
methods and data will be useful for the scientific community.

Some analyses are incomplete, which would be improved if the authors showed analyses
with other layers of the networks and various additional partial correlation analyses.

Clarity

(1) Partial correlations methods incomplete - it is not clear what is being partialled out in
each analysis. It is possible to guess sometimes, but it is not entirely clear for each analysis.
This is important as it is difficult to assess if the partial correlations are sensible/correct in
each case. Also, the Figure 1 caption is short and unclear.

For example, ANN-EEG partial correlations - "Finally, we directly compared the timepoint-by-
timepoint EEG neural RDMs and the ANN RDMs (Figure 3F). The early layer representations
of both ResNet and CLIP were significantly correlated with early representations in the
human brain" What is being partialled out? Figure 3F says partial correlation

Issues / open questions

(2) Semantic representations vs hypothesized (hyp) RDMs (real-world size, etc) - are the
representations explained by variables in hyp RDMs or are there semantic representations
over and above these? E.g., For ANN correlation with the brain, you could partial out hyp
RDMs - and assess whether there is still semantic information left over, or is the variance
explained by the hyp RDMs?

(3) Why only early and late layers? I can see how it's clearer to present the EEG results.
However, the many layers in these networks are an opportunity - we can see how
simple/complex linear/non-linear the transformation is over layers in these models. It would
be very interesting and informative to see if the correlations do in fact linearly increase from
early to later layers, or if the story is a bit more complex. If not in the main text, then at least
in the supplement.

(4) Peak latency analysis - Estimating peaks per ppt is presumably noisy, so it seems
important to show how reliable this is. One option is to find the bootstrapped mean latencies
per subject.
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(5) "Due to our calculations being at the object level, if there were more than one of the same
objects in an image, we cropped the most complete one to get a more accurate retinal size. "
Did EEG experimenters make sure everyone sat the same distance from the screen? and
remain the same distance? This would also affect real-world depth measures.

https://doi.org/10.7554/eLife.98117.1.sa2

Reviewer #2 (Public Review):
Summary:

This paper aims to test if neural representations of images of objects in the human brain
contain a 'pure' dimension of real-world size that is independent of retinal size or perceived
depth. To this end, they apply representational similarity analysis on EEG responses in 10
human subjects to a set of 200 images from a publicly available database (THINGS-EEG2),
correlating pairwise distinctions in evoked activity between images with pairwise differences
in human ratings of real-world size (from THINGS+). By partialling out correlations with
metrics of retinal size and perceived depth from the resulting EEG correlation time courses,
the paper claims to identify an independent representation of real-world size starting at 170
ms in the EEG signal. Further comparisons with artificial neural networks and language
embeddings lead the authors to claim this correlation reflects a relatively high-level' and
'stable’ neural representation.

Strengths:
- The paper features insightful figures/illustrations and clear figures.

- The limitations of prior work motivating the current study are clearly explained and seem
reasonable (although the rationale for why using 'ecological’ stimuli with backgrounds
matters when studying real-world size could be made clearer; one could also argue the
opposite, that to get a 'pure’ representation of the real-world size of an 'object concept’, one
should actually show objects in isolation).

- The partial correlation analysis convincingly demonstrates how correlations between
feature spaces can affect their correlations with EEG responses (and how taking into account
these correlations can disentangle them better).

- The RSA analysis and associated statistical methods appear solid.
Weaknesses:

- The claim of methodological novelty is overblown. Comparing image metrics, behavioral
measurements, and ANN activations against EEG using RSA is a commonly used approach to
study neural object representations. The dataset size (200 test images from THINGS) is not
particularly large, and neither is comparing pre-trained DNNs and language models, or using
partial correlations.

- The claims also seem too broad given the fairly small set of RDMs that are used here (3 size
metrics, 4 ANN layers, 1 Word2Vec RDM): there are many aspects of object processing not
studied here, so it's not correct to say this study provides a 'detailed and clear
characterization of the object processing process'.

- The paper lacks an analysis demonstrating the validity of the real-world depth measure,
which is here computed from the other two metrics by simply dividing them. The rationale
and logic of this metric is not clearly explained. Is it intended to reflect the hypothesized
egocentric distance to the object in the image if the person had in fact been 'inside’ the
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image? How do we know this is valid? It would be helpful if the authors provided a validation
of this metric.

- Given that there is only 1 image/concept here, the factor of real-world size may be
confounded with other things, such as semantic category (e.g. buildings vs. tools). While the
comparison of the real-world size metric appears to be effectively disentangled from retinal
size and (the author's metric of) depth here, there are still many other object properties that
are likely correlated with real-world size and therefore will confound identifying a 'pure’
representation of real-world size in EEG. This could be addressed by adding more hypothesis
RDMs reflecting different aspects of the images that may correlate with real-world size.

- The choice of ANNs lacks a clear motivation. Why these two particular networks? Why pick
only 2 somewhat arbitrary layers? If the goal is to identify more semantic representations
using CLIP, the comparison between CLIP and vision-only ResNet should be done with models
trained on the same training datasets (to exclude the effect of training dataset size & quality;
cf Wang et al., 2023). This is necessary to substantiate the claims on page 19 which attributed
the differences between models in terms of their EEG correlations to one of them being a
'visual model' vs. 'visual-semantic model'.

- The first part of the claim on page 22 based on Figure 4 'The above results reveal that real-
world size emerges with later peak neural latencies and in the later layers of ANNs,
regardless of image background information' is not valid since no EEG results for images
without backgrounds are shown (only ANNSs).

Appraisal of claims:

While the method shows useful and interesting patterns of results can be obtained by
combining contrasting behavioral/image metrics, the lack of additional control models makes
the evidence for the claimed unconfounded representation of real-world size in EEG
responses incomplete.

Discussion of likely impact:

The paper is likely to impact the field by showcasing how using partial correlations in RSA is
useful, rather than providing conclusive evidence regarding neural representations of objects
and their sizes.

Additional context important to consider when interpreting this work:

- Page 20, the authors point out similarities of peak correlations between models
(Interestingly, the peaks of significant time windows for the EEG x HYP RSA also correspond
with the peaks of the EEG x ANN RSA timecourse (Figure 3D,F)". Although not explicitly stated,
this seems to imply that they infer from this that the ANN-EEG correlation might be driven by
their representation of the hypothesized feature spaces. However this does not follow: in
EEG-image metric model comparisons it is very typical to see multiple peaks, for any type of
model, this simply reflects specific time points in EEG at which visual inputs (images) yield
distinctive EEG amplitudes (perhaps due to stereotypical waves of neural processing?), but
one cannot infer the information being processed is the same. To investigate this, one could
for example conduct variance partitioning or commonality analysis to see if there is variance
at these specific time-points that is shared by a specific combination of the hypothesis and
ANN feature spaces.

- Page 22 mentions 'The significant time-window (90-300ms) of similarity between Word2Vec
RDM and EEG RDMs (Figure 5B) contained the significant time-window of EEG x real-world
size representational similarity (Figure 3B)". This is not particularly meaningful given that the
Word2Vec correlation is significant for the entire EEG epoch (from the time-point of the
signal 'arriving' in visual cortex around ~90 ms) and is thus much less temporally specific
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than the real-world size EEG correlation. Again a stronger test of whether Word2Vec indeed
captures neural representations of real-world size could be to identify EEG time-points at
which there are unique Word2Vec correlations that are not explained by either ResNet or
CLIP, and see if those time-points share variance with the real-world size hypothesized RDM.

https://doi.org/10.7554/eLife.98117.1.sa1

Reviewer #3 (Public Review):

The authors used an open EEG dataset of observers viewing real-world objects. Each object
had a real-world size value (from human rankings), a retinal size value (measured from each
image), and a scene depth value (inferred from the above). The authors combined the EEG
and object measurements with extant, pre-trained models (a deep convolutional neural
network, a multimodal ANN, and Word2vec) to assess the time course of processing object
size (retinal and real-world) and depth. They found that depth was processed first, followed
by retinal size, and then real-world size. The depth time course roughly corresponded to the
visual ANNSs, while the real-world size time course roughly corresponded to the more
semantic models.

The time course result for the three object attributes is very clear and a novel contribution to
the literature. However, the motivations for the ANNs could be better developed, the
manuscript could better link to existing theories and literature, and the ANN analysis could
be modernized. I have some suggestions for improving specific methods.

(1) Manuscript motivations

The authors motivate the paper in several places by asking " whether biological and artificial
systems represent object real-world size". This seems odd for a couple of reasons. Firstly, the
brain must represent real-world size somehow, given that we can reason about this question.
Second, given the large behavioral and fMRI literature on the topic, combined with the
growing ANN literature, this seems like a foregone conclusion and undermines the novelty of
this contribution.

While the introduction further promises to "also investigate possible mechanisms of object
real-world size representations.”, I was left wishing for more in this department. The authors
report correlations between neural activity and object attributes, as well as between neural
activity and ANNs. It would be nice to link the results to theories of object processing (e.g., a
feedforward sweep, such as DiCarlo and colleagues have suggested, versus a reverse
hierarchy, such as suggested by Hochstein, among others). What is semantic about real-world
size, and where might this information come from? (Although you may have to expand
beyond the posterior electrodes to do this analysis).

Finally, several places in the manuscript tout the "novel computational approach”. This seems
odd because the computational framework and pipeline have been the most common
approach in cognitive computational neuroscience in the past 5-10 years.

(2) Suggestion: modernize the approach

I was surprised that the computational models used in this manuscript were all 8-10 years
old. Specifically, because there are now deep nets that more explicitly model the human brain
(e.g., Cornet) as well as more sophisticated models of semantics (e.g., LLMs), I was left hoping
that the authors had used more state-of-the-art models in the work. Moreover, the use of a
single dCNN, a single multi-modal model, and a single word embedding model makes it
difficult to generalize about visual, multimodal, and semantic features in general.

(3) Methodological considerations
a) Validity of the real-world size measurement
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I was concerned about a few aspects of the real-world size rankings. First, I am trying to
understand why the scale goes from 100-519. This seems very arbitrary; please clarify.
Second, are we to assume that this scale is linear? Is this appropriate when real-world object
size is best expressed on a log scale? Third, the authors provide "sand" as an example of the
smallest real-world object. This is tricky because sand is more "stuff" than "thing", so I
imagine it leaves observers wondering whether the experimenter intends a grain of sand or a
sandy scene region. What is the variability in real-world size ratings? Might the variability
also provide additional insights in this experiment?

b) This work has no noise ceiling to establish how strong the model fits are, relative to the
intrinsic noise of the data. I strongly suggest that these are included.

https://doi.org/10.7554/eLife.98117.1.sa0
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