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Abstract
This easy-to-follow handbook offers a straightforward guide to electroencepha-
logram (EEG) analysis using Python, aimed at all EEG researchers in cognitive
neuroscience and related fields. It spans from single-subject data preprocessing to
advanced multisubject analyses. This handbook contains four chapters: Pre-
processing Single-Subject Data, Basic Python Data Operations, Multiple-Subject
Analysis, and Advanced EEG Analysis. The Preprocessing Single-Subject Data
chapter provides a standardized procedure for single-subject EEG data pre-
processing, primarily using the MNE-Python package. The Basic Python Data
Operations chapter introduces essential Python operations for EEG data handling,
including data reading, storage, and statistical analysis. The Multiple-Subject
Analysis chapter guides readers on performing event-related potential and time-
frequency analyses and visualizing outcomes through examples from a face
perception task dataset. The Advanced EEG Analysis chapter explores three
advanced analysis methodologies, Classification-based decoding, Representational
Similarity Analysis, and Inverted Encoding Model, through practical examples
from a visual working memory task dataset using NeuroRA and other powerful
packages. We designed our handbook for easy comprehension to be an essential
tool for anyone delving into EEG data analysis with Python (GitHub website:
https://github.com/ZitongLu1996/Python-EEG-Handbook; For Chinese version:
https://github.com/ZitongLu1996/Python-EEG-Handbook-CN).
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1 | INTRODUCTION

Nearly all electroencephalogram (EEG) novices begin their
journey into the preprocessing of EEG data with
EEGLAB,[1] whose user-friendly GUI interface and
MATLAB-based script operations have influenced an entire
generation of EEG researchers. However, with the rapid
development of the straightforward and accessible Python
language, a wealth of community resources has expanded
into cognitive neuroscience. Many related toolkits, such as

MNE-Python,[2] Nilearn,[3] Nibabel,[4] and NeuroRA,[5]

have emerged, allowing us to analyze various neural datasets
using Python. Regrettably, these tools have not been widely
adopted and remain underutilized. To address this gap, with
the dual aims of encouraging more psychology and neuro-
science researchers to join the Python community and
providing a conduit to more advanced EEG data operations,
we have created a Python EEG processing tutorial. This
effort has culminated in this “Python Handbook for EEG
Data Analysis.”
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“What if I'm not good at programming?” or “What if I
find it difficult to learn data processing with Python?” in
EEG data processing. Indeed, code-based data processing
can be daunting for many. However, through this easy-to-
follow handbook, we assure you that there is no need for
trepidation. By taking it step by step, learning and under-
standing gradually, your programming skills will undoubt-
edly improve, and you will become proficient in EEG data
processing.

Three years ago, we embarked on this project with an
attitude of rigor, sincerity, and public service, releasing our
initial Chinese version of the Python EEG data processing
handbook to the simplified Chinese community during the
summer of 2021. Over these years, we have continuously
received and embraced feedback and suggestions from our
readers. This feedback has allowed us to refine the hand-
book, culminating in a relatively more comprehensive and
complete English version.

2 | METHODS AND PROTOCOLS

This handbook comprises four chapters: Preprocessing
Single-Subject Data, Basic Python Data Operations,
Multiple-Subject Analysis, and Advanced EEG Analysis
(Figure 1). The Preprocessing Single-Subject Data chapter
provides a standardized procedure for preprocessing EEG
data of individual subjects primarily using the MNE-
Python package. The Basic Python Data Operations
chapter introduces Python matrix operations, data reading
and storage, and the foundation of statistical analysis and
implementation relevant to EEG data processing. The
Multiple-Subject Analysis chapter guides the readers
through detailed examples of how to read data from
multiple subjects, conduct event-related potential (ERP)
and time-frequency analyses, and visualize the results
based on an open dataset of face perception.[6] The
Advanced EEG Analysis chapter explains three popular
analysis methodologies, Classification-based decoding,[7,8]

Representational Similarity Analysis (RSA),[9,10] and
Inverted Encoding Model (IEM),[11–14] through practical
examples based on an open dataset of a visual working
memory task[15] using NeuroRA[5] and enhanced inverted-
encoding[14] packages.

We sincerely hope that our EEG handbook offers valu-
able insights and suggestions. While we have endeavored to
present a very easy-to-follow tutorial, it understandably
cannot be directly applied to your own EEG data in its en-
tirety. However, with some straightforward modifications,
you might find yourself adeptly processing your data in no
time. We hope our readers and users can apply this knowl-
edge broadly. The content in this handbook may not delve
deeply into every aspect; thus, the nuances and mysteries,
techniques and philosophies, are left for you to discover
through diligent practice and experience.

2.1 | Preprocessing single-subject data

In this single-subject analysis, EEG preprocessing com-
prises eight steps: loading data, filtering data, rejecting
artifacts, setting the reference, segmenting data into
epochs, data averaging, time-frequency analysis, and data
extraction.

2.1.1 | Loading data

This step divides EEG processing into the following steps:
reading raw data, checking raw data information, localizing
channels, setting channel types, checking data information
after modification, and visualizing raw data (see GitHub
website, Chapter 1: Preprocessing Single-subject Data).

Since MATLAB-based EEGLAB is the most widely
used EEG data analysis toolbox that most researchers are
more familiar with, we use the classic dataset (“eeglab_data.
set”) in EEGLAB as an example to teach how to use Python
to deal with EEG data (source code, see GitHub website,
Chapter 1).

Then, checking raw data information, localizing chan-
nels, setting channel types, and checking data information
after modification can refer to the GitHub website (see
Chapter 1). One can plot raw data waveforms (Figure 2) and
the channel locations map (Figure 3) in Visualizing Raw
Data, such as,

raw.plot(duration=5, n_channels=32, clipping=None)
raw.plot_sensors(ch_type='eeg', show_names=True)

Key points

What is already known about this topic?
� Nearly all electroencephalogram (EEG) novices

begin their journey into the preprocessing of EEG
data with EEGLAB.

� With the rapid development of the Python lan-
guage, a wealth of community resources is now
available in cognitive neuroscience, such as
MNE-Python, Nilearn, Nibabel, and NeuroRA.

What does this study add?
� Regrettably, these Python tools have not been

widely adopted and remain underutilized. We
have addressed this gap by creating a Python
EEG processing tutorial. This effort has culmi-
nated in this “Python Handbook for EEG Data
Analysis”.

� This study offers a straightforward guide to EEG
analysis using Python for all EEG researchers in
neuroscience and related fields.
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2.1.2 | Filtering data

This step divides EEG processing into the following stages:
notch filtering and high/low-pass filtering. The power spec-
trum in 2.1.1 shows that there might be ambient noise at
around 60 Hz. Use the trap filter to remove utility frequency.
Various countries and areas may have different utility fre-
quencies. Remember to judge it by the power spectrum. In
preprocessing, high-pass filtering is usually a necessary step.
The most common filtering operation is a low-pass filter at
30 Hz and a high-pass filter at 0.1 Hz. High-pass filtering
eliminates voltage drift, and low-pass filtering eliminates
high-frequency noises (see GitHub website, Chapter 1).

2.1.3 | Rejecting artifacts

This step divides EEG processing into the following steps:
remove bad segments, remove bad channels, and indepen-
dent components analysis (ICA). Among them, ICA in-
cludes the following steps: run ICA, plot the timing signal
of each component, plot the topography of each component,
check the signal difference before and after the removal of
a component/several components, visualize each compo-
nent, and exclude components (see GitHub website,
Chapter 1).

Marking bad segments can be done manually via the
MNE-Python GUI. MNE does not delete the bad segments
directly. However, it marks the data with bad markers. In the
subsequent data processing, we can set the parameter
“reject_by_annotation” as True in functions to automatically
exclude the marked segments during data processing. If you
encounter the problem that the GUI window does not pop
up, please add the following code to the top of the script.

MNE does not delete the bad channels directly. MNE
marks them with “bad” labels. In the example below, we
assume that channel “FC5” is bad. Thus, we can mark “FC5”
as “bad”:

raw.info['bads'].append('FC5')
print(raw.info['bads']))
Of course, we can also add multiple bad channels (see

GitHub website, Chapter 1). The programming strategy
of the ICA step in MNE is to first build an ICA object
(an ICA analyzer) and then use this ICA analyzer to
examine the EEG data (through methods of the ICA ob-
ject). Since ICA is ineffective for low-frequency data, ICA
and artifact component removal are based on high-pass
1 Hz data and then applied to high-pass 0.1 Hz data.
We can plot the topography of each component (Figure 4)
by running

ica.plot_components ()
For the other steps, please see GitHub website, Chapter

1: Preprocessing Single-subject Data, Step 3 Rejecting
Artifacts.

2.1.4 | Setting the reference

If you want to use the papillary reference method in this step,
we usually choose “TP9”and “TP10” as reference channels
with the following codes:

raw.set_eeg_reference(ref_channels=['TP9','TP10'])
You can use the average reference method with the

following code:
raw.set_eeg_reference(ref_channels='average')
You can use the REST reference method with the

following code: You must pass in a forward parameter.
For details, see the corresponding MNE introduction at

F I GURE 1 Overview of our handbook. It includes four chapters and subsections with the main packages used in the corresponding sections.
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https://mne.tools/stable/auto_tutorials/preprocessing/55_
setting_eeg_reference.html.

raw.set_eeg_reference(ref_channels='REST',
forward=forward)

You can use a bipolar reference method with the
following code: (“EEG X” and “EEG Y” correspond to the
anode and cathode leads used for reference, respectively).

raw_bip_ref = mne.set_bipolar_reference(raw, anode=
['EEG X'], cathode=['EEG Y'])

2.1.5 | Segmenting data into epochs

This step divides EEG processing into the following steps:
extracting event information, event information data type
conversion, segmenting data, visualizing segmented data,
and plotting the power spectrum topology (see GitHub
website, Chapter 1).

To plot the power spectrum topology (Figure 5), we
can run

bands = [(4, 8, 'Theta'), (8, 12, 'Alpha'), (12, 30, 'Beta')]
epochs.plot_psd_topomap(bands=bands, vlim='joint')

F I GURE 2 Visualization of the raw electroencephalogram data.

F I GURE 3 Visualization of the channel locations on the
topographic map.
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2.1.6 | Data averaging

MNE uses the Epochs class to store segmented data and
the Evoked class to store evoked (after averaging)
data. This step divides EEG processing into the following
steps: average data and visualize evoked data. The visualize
evoked data step includes the following steps: plot channel-
wise timing signals, plot topographic maps, plot evoked
data as butterfly plot and add topographic maps, plot
channel-wise hotmaps, plot 2d topography, and plot the
average ERP of all channels (see GitHub website, Chap-
ter 1).

To plot evoked data as a butterfly plot and add topo-
graphic maps (Figure 6), we can run

evoked.plot_joint ()
In plot 2D topography (Figure 7), we can run
evoked.plot_topo ()

2.1.7 | Time-frequency analysis

MNE provides three methods for time-frequency analysis,
which are

1. Morlet wavelets, corresponding to mne.time_frequency.
tfr_morlet ()

2. DPSS tapers, corresponding to mne.time_frequency.
tfr_multitaper ()

F I GURE 4 Visualization of the topographies of independent components analysis components.

F I GURE 5 Visualization of the scalp topography of PSD for various frequency bands.
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3. Stockwell Transform, corresponding to mne.time_
frequency.tfr_stockwell ()

This step divides EEG processing into the following steps:
conduct time-frequency analysis and plot the time-frequency
result (see GitHub website, Chapter 1). The visualization
methods of time-frequency in MNE allow us to select different
baseline correlation methods. The corresponding parameter is
mode, which includes the following options:

1. “mean”, to subtract the baseline mean
2. “ratio”, to divide by the baseline mean

3. “logratio”, to divide by the baseline mean and take the
logarithm

4. “percentage”, to subtract the baseline mean and divide by
the baseline mean

5. “zscore”, to subtract the baseline mean and divide by the
baseline standard deviation

6. “zlogratio”, to divide by the baseline mean, take the
logarithm, and then divide by the standard deviation of
the baseline

The detailed example uses the logratio method for
baseline correction. Please see GitHub website, Chapter 1:

F I GURE 6 Visualization of the evoked data as a butterfly plot combined with topographic maps for several time points.

F I GURE 7 Visualization of the topographic map of the evoke data.
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Preprocessing Single-subject Data, Step 7 Time-Frequency
Analysis.

2.1.8 | Data extraction

After completing the relevant calculations, we always extract
the raw data array, segmented data array, and time-frequency
result array, etc. In MNE, the Raw Class (raw data type),
Epochs Class (segmented data type), and Evoked Class
(averaged data type) provide the get_data () method. And the
AverageTFR Class (time-frequency analysis data type) pro-
vides the.data attribute.

This step divides EEG processing into the following steps:
use “get_data()” and use “.data” (see GitHub website,
Chapter 1: Preprocessing Single-subject Data, Step 8 Data
Extraction).

2.2 | Basic Python data operations

According to the analytical skills used in EEG data process-
ing, this section provides a basic tutorial on using Python to
conduct array operations and statistical analysis. It includes
basic array operations, basic data reading and storage opera-
tions, and basic statistical analysis.

2.2.1 | Basic array operations

NumPy arrays are the most common data type for analysis
operations when processing data with Python. In the first
part, we will introduce some basic yet crucial NumPy array
operations and their implementations in data analysis. This
step divides EEG processing into the following steps:
generating arrays, flattening the matrix into the vector,
modifying array sizes (reshaping the array), array trans-
position, array merging, averaging values in an array, and
converting a non-NumPy object into a NumPy array.

This handbook's operational guide is based on NumPy
arrays. Therefore, users can easily perform customized an-
alyses based on array-form EEG data.

2.2.2 | Basic data reading and storage
operations

This part introduces some basic operations for data (array)
reading and storage based on Python. This step divides EEG
processing into the following steps: data reading based on
MNE, storing and reading data with h5py, storing and
reading data with NumPy, storing and reading a 2-
dimensional array into a text file with NumPy, reading.mat
files as NumPy array. Additionally, we explain how to save
NumPy array-form data as.mat files for users who want to
conduct subsequent analysis with MATLAB.

2.2.3 | Basic statistical analysis

This section introduces a series of basic statistical operations
to conduct group analysis of EEG data from multiple subjects.
Please see GitHub website, Chapter 2: Basic Python Data
Operations.

2.3 | Multiple-subject analysis

The section on multisubject analysis comprises the following
three parts: batch processing for reading and storing demo
data, ERP analysis, and time-frequency analysis.

2.3.1 | Batch processing for reading and storing
demo data

This step divides EEG processing into the following steps:
preprocessed demo data 1 and batch processing for reading
demo data 1 and saving it as a.h5 file.

The original dataset is based on the article “A multi-
subject, multi-modal human neuroimaging dataset” by
Wakeman & Henson, published in Scientific Data in 2015.[6]

In this experiment, there are three categories of faces:
familiar faces, unfamiliar faces, and scrambled faces, with
150 images for each type, totaling 450 stimulus images.
Participants wore an EEG cap to perform a simple perceptual
task, which included an unpredictable stimulus phase of
800–1000 ms, a delay of 1700 ms, and an inter-trial interval
(ITI) of 400–600 ms. Each image was viewed twice, with
50% of the stimulus images being presented immediately
after the first viewing, while the other 50% appeared several
other trials after the first viewing. Here, we extracted only
the EEG data from the first eight subjects who viewed
multiple familiar face images for the first time and then
immediately viewed some of these images again in the
following trial.

Taking sub1 as an example, “sub1_first.mat” contains
EEG data for the first viewing of familiar face images, and
“sub1_rep.mat” contains EEG data for the immediate second
viewing of familiar faces. The number of trials in the former
case was double that in the latter. We preprocessed (0.1–
30 Hz filtering) and segmented the data. The data includes
74 channels (of which 70 are EEG channels, with channels
61, 62, 63, and 64 being eye movement channels) and a
sampling rate of 250 Hz. Each trial covers for 0.5 s before to
1.5 s after the stimulus presentation, with 500 time points per
trial.

2.3.2 | Event-related potential analysis

Using Demo Data 1 as an example, we visualize the ERP re-
sults and conduct statistical analyses for two conditions in the
experiment: the first viewing of familiar faces and the
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immediate repeated viewing of familiar faces. This step di-
vides EEG processing into the following steps: read data and
average epochs, and statistical analyses and visualization (see
GitHub website, Chapter 3: Multiple-Subject Analysis).

In statistical analyses and visualization, we can plot the
joint ERP results under two conditions (Figure 8),

plot_erp_2cons_results(erp_first, erp_rep, times, con_-
labels=['First', 'Repetition'], p_threshold=0.05, labelpad=25)

2.3.3 | Time-frequency analysis

We will visualize the time-frequency results and conduct
statistical analyses for two conditions in the experiment:
the first viewing of familiar faces and the immediate
repeated viewing of familiar faces. This step divides EEG
processing into the following steps: read data and conduct
the time-frequency analysis and statistical analyses and
visualization (see GitHub website, Chapter 3).

In statistical analyses and visualization, we plotted the
time-frequency result under the condition of the first viewing
of familiar faces (Figure 9),

freqs = np.arange(4, 32, 2)
times = np.arange(-200, 1000, 4)
plot_tfr_results(tfr_first_No50, freqs, times, p=0.05,

clusterp=0.05, clim=[-3, 3])
Please see GitHub website, Chapter 3: Multiple-Subject

Analysis for the other steps.

2.4 | Advanced EEG analysis

The section on advanced EEG analysis comprises the
following four parts: batch processing for reading and stor-
ing demo data, classification-based decoding,[8,15–17]

RSA,[5,9,10,18,19] and IEM[14,20,21] (see GitHub website,
Chapter 4: Advanced EEG Analysis).

2.4.1 | Batch processing for reading and storing
demo data

This step divides EEG processing into the following steps:
preprocessed demo data 2 and batch processing for reading
demo data 2 and saving it as a.h5 file (see GitHub website,
Chapter 4).

In preprocessed demo data 2, the original dataset is based
on the data from Experiment 2 in the article “Dissociable
Decoding of Spatial Attention and Working Memory from
EEG Oscillations and Sustained Potentials” by Bae & Luck,
published in the Journal of Neuroscience in 2019.[15] It in-
volves a visual working memory task that requires partici-
pants to remember the orientation of a teardrop shape
presented for 200 ms. After a delay of 1300 milliseconds, it
presented a teardrop shape with a random orientation, and
participants were required to rotate the mouse to align its
orientation as closely as possible with their recollection. The
stimulus could appear in 16 orientations and 16 locations.
Here, only data from the first five participants are extracted,
consisting of preprocessed ERP data (see the original article
for preprocessing parameters) with labels for each trial's
orientation and location.

2.4.2 | Classification-based decoding

This step divides EEG processing into the following steps:
get EEG data and labels, time-by-time EEG decoding, and
cross-temporal EEG decoding (see GitHub website, Chap-
ter 4).

In time-by-time EEG decoding, we can plot time-by-time
orientation decoding results (Figure 10),

plot_tbyt_decoding_acc(accs_ori, start_time=-0.5, end_-
time=1.5, time_interval=0.02, chance=0.0625, p=0.05,
cbpt=True, stats_time=[0, 1.5], xlim=[-0.5, 1.5], ylim=
[0.05, 0.15])

F I GURE 8 Visualization of the joint event-related potential results
under both the first viewing and the immediate repeated viewing of
familiar face conditions.

F I GURE 9 Visualization of the time-frequency results under the
condition of the first viewing of familiar faces.
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In cross-temporal EEG decoding, we can plot cross-
temporal orientation and position decoding results
(Figure 11),

plot_ct_decoding_acc(accs_crosstime_ori, start_timex=-
0.5, end_timex=1.5, start_timey=-0.5, end_timey=1.5,
time_intervalx=0.02, time_intervaly=0.02, chance=0.0625,
p=0.05, cbpt=True, stats_timex=[0, 1.5], stats_timey=[0,
1.5], xlim=[-0.5, 1.5], ylim=[-0.5, 1.5], clim=[0.06, 0.075])

2.4.3 | Representational similarity analysis

This step divides EEG processing into the following steps:
calculate EEG representational dissimilarity matrices
(RDMs), construct the hypothesis-based RDM, and RSA
(see GitHub website, Chapter 4: Advanced EEG Analysis).

2.4.4 | Inverted encoding model

This step divides EEG processing into the following steps:
Apply an enhanced inverted encoding model (eIEM) to
decode orientation information, define a function to plot
eIEM results, and apply eIEM to decode position informa-
tion (see GitHub website, Chapter 4: Advanced EEG
Analysis).

In this part, we refer to a preprint “Scotti, P. S., Chen, J.,
& Golomb, J. D. (2021). An eIEM for neural re-
constructions. bioRxiv”[14] that utilized an eIEM.

3 | DISCUSSION AND CONCLUSION

This EEG handbook demonstrates the efficacy of Python
libraries, such as MNE-Python and NeuroRA, in stream-
lining the EEG data preprocessing and analysis process,
providing an easy-to-follow guide for EEG researchers in
cognitive neuroscience and related fields. Since our hand-
book focuses on using Python to begin analyzing EEG data,
we have not included an extensive introduction to the
theoretical aspects, such as understanding the principles

behind the phenomena of EEG data, the mathematical
foundations of various analysis methods, and interpreting
their results. We hope that everyone will learn how to
conduct these analyses and understand why they should be
done by exploring more literature. Moreover, our handbook
still lacks coverage of many topics that may be of interest,
such as brain connectivity analysis based on resting-state
EEG,[22–24] image reconstruction from EEG data,[25–29] and
research combining artificial neural networks with EEG
data.[16,17,30–32] We will add more content to the handbook to
make this tutorial more comprehensive. We encourage users
to suggest new analysis methods and algorithms via email or
by submitting Issues via our GitHub project page.

This handbook is a pivotal contribution to helping re-
searchers conduct EEG data analysis, offering a clear, step-
by-step guide that demystifies complex analytical pro-
cesses, thereby empowering researchers to conduct more in-
depth and insightful EEG studies. At the same time, we also
hope that more people will join the open-source community
in cognitive neuroscience. With the strong advocacy for
open science and the rapid innovation in various research
methods in psychology and neuroscience, we need more
effective learning guides and shared resources to drive
continuous progress in the field.
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