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Abstract 

Although visual input is initially recorded in two dimensions on our retinas, we perceive and 
interact with the world in three dimensions. Achieving 3D perception requires the brain to 
integrate 2D spatial representations with multiple depth cues, such as binocular disparity. 
However, most studies typically examine 2D and depth information in isolation, leaving the 
integrated nature of 3D spatial encoding largely underexplored. In this study, we collected a 
large-scale, multimodal neuroimaging dataset consisting of multiple EEG and fMRI sessions 
while participants viewed stereoscopic 3D stimuli through red-green anaglyph glasses. 
Participants first completed a behavioral session including depth judgement tasks and a novel 
cube adjustment task to quantify and calibrate individual depth perception in units of binocular 
disparity. Then during two EEG and two fMRI sessions, participants passively viewed stimuli 
presented at 64 systematically sampled 3D locations, yielding over 66,000 trials in total across 
ten participants. Combining this large-scale EEG-fMRI dataset with computational methods via 
representational similarity analysis, we not only systematically characterized the spatiotemporal 
representation of multiple spatial features in 3D perception but also explored how different 
coordinate systems (e.g., Cartesian or Polar) might be employed across brain regions and time. 
Our results reveal that human brains employ multiple types of spatial feature representations and 
coordinate systems to encode spatial locations at different temporal stages and across distinct 
cortical regions. In addition to strong representations of 2D space throughout visual cortex, we 
find unique representations for depth and 3D features in later timepoints and visual areas, 
including some evidence for 3D processing in parahippocampus. These findings contribute to a 
more comprehensive understanding of the spatiotemporal organization of neural representations 
that support 3D perception. Additionally, our novel large dataset will be made openly available to 
support future research on 3D perception and spatial cognition. 
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Introduction 

Despite the inherently two-dimensional nature of retinal input, humans experience the world as a 
richly structured three-dimensional environment. The human visual system has the ability to 
integrate 2D spatial representations with a range of depth cues– including binocular disparity, 
perspective, shading, relatize size, occlusion, and motion – to construct rich 3D spatial percepts 
that support perception, navigation, and interaction with the environment (Howard, 2012; 
Welchman, 2016). Yet despite its centrality, the neural mechanisms that enable this 
transformation from 2D input to 3D visual perception remain poorly understood. A fundamental 
theoretical question in vision science is how the brain builds internal representations of 3D 
space: What spatial features and coordinate systems are used to encode location? How are depth 
and 2D features integrated into unified percepts? And how do these representations evolve across 
cortical regions and time? Addressing these questions is critical for understanding not only the 
computations that underlie visual perception, but also broader principles of neural coding, spatial 
cognition, and multisensory integration. 

Decades of research have investigated how the brain encodes 2D spatial dimensions of space (T. 
Carlson et al., 2011; Engel et al., 1994; Fischer et al., 2011; Golomb & Kanwisher, 2012; Grill-
Spector & Malach, 2004; Kravitz et al., 2010; Maunsell & Newsome, 1987; Schwarzlose et al., 
2008; Sereno et al., 1995; Silver & Kastner, 2009; Tootell, Hadjikhani, Mendola, et al., 1998; 
Wandell et al., 2007), as well as how visual areas respond to depth information conveyed by 
binocular disparity and other cues (Backus et al., 2001; Bridge et al., 2023; Chen et al., 2020; Ip 
et al., 2014; Neri et al., 2004; Uka & DeAngelis, 2006). Recent findings further suggest a gradual 
transition from 2D to depth representations along the visual hierarchy (Finlayson et al., 2017; 
Henderson et al., 2019). However, most prior work has investigated or analyzed 2D and depth in 
isolation, leaving the integrated nature of 3D visual perception – how individual spatial features 
are jointly represented and how these features converge into coherent 3D representations – 
largely unexplored. 

An additional layer of complexity stems from the fact that spatial locations can be encoded in 
multiple coordinate systems. In 3D space, Cartesian, Polar, Cylindrical, and Spherical coordinate 
systems are all geometrically valid and may serve distinct computational functions across brain 
regions. Previous studies using fMRI retinotopic mapping, population receptive field (pRF) 
modeling, or multivariate pattern analysis have demonstrated cortical encoding of polar-based 
features such as eccentricity and polar angle (Carvalho et al., 2020; Conner et al., 2004; Silver & 
Kastner, 2009; Tootell et al., 1997; Tootell, Hadjikhani, Vanduffel, et al., 1998; Tu et al., 2022; 
Wandell et al., 2007; Warnking et al., 2002; Wilkinson et al., 2000), cartesian-based features such 
as horizontal and vertical position (J. M. Carlson et al., 2011; Fischer et al., 2011; Golomb & 
Kanwisher, 2012; Graumann et al., 2022; Kravitz et al., 2010; Lu et al., 2022; Schwarzlose et al., 
2008), and position-in-depth features (Alvarez et al., 2021; Bridge & Parker, 2007; Finlayson et 
al., 2017; Golomb, 2018; Henderson et al., 2019; Ip et al., 2014). However, no prior work has 
comphrehensively examined the brain’s representation of higher-dimensional spatial features 
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such as 3D radius or 3D polar angle, nor systematically compared the contributions of different 
coordinate systems within the same 3D stimulus space. It remains unknown whether the brain 
uses multiple coordinate systems in parallel, whether specific systems dominate in particular 
brain regions or time windows, and how such representations emerge and evolve across space 
and time. 

Three major methodological challenges have limited progress on these questions. First, 
perceived position-in-depth can vary across individuals and depth cues, and it is not 
straightforward to assume that a fixed distance in binocular disparity corresponds to the same 
perceived distance in depth across individuals. Most depth-based neuroimaging studies use fixed 
disparity levels across participants, precluding accurate quantitative comparisons between depth 
and horizontal/vertical dimensions (Alvarez et al., 2021; Bridge & Parker, 2007; Finlayson et al., 
2017). Second, high-resolution characterization of 3D encoding demands large-scale neural 
datasets to precisely measure feature-level and coordinate-level brain representations. Although 
recent advances in large-scale fMRI and EEG datasets have opened new possibilities for 
investigating the neural basis of visual cognition (Allen et al., 2022; Chang et al., 2019; Gifford 
et al., 2022; Grootswagers et al., 2022; Hebart et al., 2023), no such dataset currently exists for 
3D spatial perception. Third, most neuroimaging studies in humans have focused solely on depth 
encoding using fMRI, without characterizing temporal dynamics, leaving the spatiotemporal 
structure of 3D visual perception largely uncharted. 

To overcome these challenges and deeply probe the neural underpinnings of 3D perception, we 
developed a multimodal framework for tracking 3D spatial representations across time and brain 
space. First, to precisely quantify perceived depth from binocular disparity, all participants 
performed an initial behavioral “cube adjustment” task in which participants dynamically 
adjusted the distances between 3D stimuli to match perceived horizontal, vertical, and depth 
distances; i.e., until the stimuli formed the corners of a perfect cube (Figure 1A). This 
individualized calibration allowed us to derive a parametric mapping between physical disparity 
and perceived 3D depth for each participant, such that we could select an appropriately 
calibrated stimulus space for each participant ensuring accurate reconstruction of their subjective 
3D spatial experience. Then, we collected an extensive dataset of 3D visual perception 
comprising both EEG and fMRI from multiple sessions per participant (Figure 1A).  Stimuli for 
these neuroimaging sessions were viewed stereoscopically through red-green anaglyph glasses 
and sampled a structured 3D space with 64 distinct spatial locations (4×4×4 grid centered on 
fixation). For each individual, we calculated the neural representational similarity between each 
pair of stimuli at each point in time (every 20 ms) from the EEG data, and each point in brain 
space (voxel-by-voxel searchlights or functional regions of interest) from the fMRI data. 
Because each stimulus location could be defined in multiple potential coordinate systems and in 
terms of multiple spatial features, we could compare the neural patterns to different hypothetical 
representational patterns (Figure 1B-E; also see more details in Methods) to characterize how 3D 
spatial location is represented across multiple coordinate systems in both time and brain space. 
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By integrating individualized depth calibration, large-scale EEG and fMRI recordings, 
representational similarity analysis (RSA), and an expanded set of 3D spatial features 
encompassing both Cartesian and Polar coordinate systems, our unique, publicly available 
dataset enables a fine-grained analysis of how the human brain encodes 2D, depth, and integrated 
3D information. This allows us to uncover the spatiotemporal dynamics of multiple spatial 
features and coordinate systems, highlighting how the brain flexibly transforms spatial 
representations in complex 3D environments. 
 

 
Figure 1 Experimental design, coordinate systems, and representational patterns. 
(A) Tasks in our study. In Cube Adjustment Task for individualized depth calibration, participants 
adjusted the depth distance between the front and back panels using the vertices of the stimuli to generate 
a virtual cube, allowing us to derive a personalized mapping between binocular disparity and perceived 
depth distance. Upper-left: Schematic of the cube adjustment task. Upper-right: Example calibration 
function fitted based on one subject’s (Sub-03) real behavioral data. In Main EEG and fMRI task, 
participants performed a fixation-change detection task while passively viewing stimuli presented at one 
of 64 3D spatial locations arranged in a 4×4×4 grid. Stimuli were small cubes of high-contrast dynamic 
random dot stimuli presented on a lower-contrast static background viewed through red-green anaglyph 

Cube Adjustment Task

Main Task (EEG & fMRI)
(fixation change detection task)

64 possible locations

2D Spatial Coordinate 3D Spatial Coordinate
2D Cartesian

2D Polar

3D Cartesian

3D Spherical

3D Cylindrical

3D Spherical-hc

A B

x y z r θ r-3D Φ r-3D-hc Φ-hc

2D Cartesian AA AA

2D Polar AA AA

3D Cartesian AA AA AA

3D Cylindrical AA AA AA

3D Spherical AA AA AA

3D Spherical-hc AA AA AA

Neural RDMs
(64×64 matrices of signals dissimilarity

between all pairs of conditions;
EEG = each timepoint; 

fMRI = each searchlight)

C

E

D

Hypothesis-based Feature RDMs (spatial feature dimensions)
(64×64 matrices of difference between two conditions as dissimilarity )

x
(horizontal position)

y
(vertical position)

z
(depth position)

r
(radius / eccentricity)

θ
(polar angle)

r-3D
(3D radius)

Φ
(3D polar angle)

r-3D-hc
(3D head-centered radius)

Φ-hc
(3D head-centered polar angle)

1.5 s per trial
shown on 1 of 64 positions

adjust the depth distance
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glasses. (B) Schematics illustrating the possible 2D and 3D spatial coordinate systems used to define 
spatial features. For each schematic, the black fixation cross indicates the fixation location and the gray 
dot the example stimulus location, with the light gray rectangle depicting the computer monitor. (C) Table 
showing the spatial coordinate systems (rows) and which spatial feature dimensions (columns) they 
contain. (D) Neural RDMs (64 x 64 matrices) were computed separately for each EEG time point or each 
fMRI searchlight, capturing pairwise signal dissimilarity between the 64 spatial conditions. (E) 
Hypothesis-based feature RDMs were constructed for each of the nine different spatial feature dimensions 
by calculating pairwise differences in feature values between conditions. Top row shows geometric 
representations of an example pair of stimuli (Position A and Position B) and how dissimilarity is 
calculated for each spatial feature dimension (red lines; e.g. comparison of xA and xB). Bottom row shows 
the 64x64 RDM for each spatial feature dimension. Neural RDMs were compared with Hypothesis-based 
RDMs via representational similarity analysis.  
 

Results 

In our study, we aimed to uncover spatiotemporal neural representations of different spatial 
dimensions and coordinates comprising human 3D perception. We collected a large-scale EEG-
fMRI dataset of healthy young adults viewing 64 locations sampled across individually 
perceptually-calibrated 3D space (Figure 1A).  

To characterize how different 3D spatial features and coordinates (Figure 1B-C) are represented 
in the human brain over time and across brain space, we applied representational similarity 
analysis (RSA). Neural representational dissimilarity matrices (neural RDMs; Figure 1D) were 
computed for each time point using EEG data and for each searchlight location or functional 
region of interest (ROI) using fMRI data. In parallel, we constructed nine hypothesis-based 
feature RDMs (Figure 1E) corresponding to nine possible spatial features – horizontal position 
(x), vertical position (y), depth position (z), radius / eccentricity (r), polar angle (θ), 3D radius (r-
3D), 3D polar angle (Φ), 3D head-centered radius (r-3D-hc), and 3D head-centered polar angle 
(Φ-hc) from six possible spatial coordinate systems (2D Cartesian, 2D Polar; 3D Cartesian, 3D 
Cylindrical, 3D Spherical, and 3D Spherical-hc). To isolate the unique contribution of each 
feature, we computed partial correlations between neural RDMs and individual hypothesis-based 
feature RDMs, controlling for all other hypothesis-based RDMs. This approach allowed us to 
identify the distinct spatiotemporal representations of each spatial feature, controlling for 
variance explained by other features. Moreover, because each participant viewed an identical set 
of stimuli twice under different binocular disparity settings (flipping the direction of the red-
green anaglyph glasses between sessions), our analyses reflect perceived depth from disparity, 
controlling for any monocular-based cues or potential low-level color or contrast differences 
across eyes.    

Representations of 2D and 3D spatial features 
First, to establish the overall spatiotemporal organization of spatial encoding of 2D, depth, and 
3D spatial features in the human brain, we grouped the spatial features into three categories: 2D 
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spatial features (x, y, r, θ), position-in-depth feature (z), and 3D spatial features (r-3D, ϕ, r-3D-
hc, ϕ-hc). Here, representational similarity was averaged across all features within each category 
at each EEG time-point and each fMRI searchlight unit, yielding temporal and spatial profiles for 
2D, depth, and 3D encoding. As shown in Figure 2A, EEG results revealed a clear temporal 
hierarchy from 2D to depth: 2D features were represented earliest and strongest (40-1800 ms), 
followed by depth features, which showed relatively weaker but temporally extended encoding – 
first emerging transiently in an early stage (120-280 ms) and reappearing more robustly in a late 
stage (620-1800 ms). However, we did not observe a significant time-window of 3D feature 
representation when the four 3D spatial features were averaged together. fMRI searchlight results 
(Figure 2B; see also Figure S1) demonstrated a complementary spatial hierarchy. 2D 
representations (red) were broadly distributed across early visual cortex, posterior parietal cortex, 
and ventral temporal cortex. Depth encoding (green) appeared in spatially scattered patches, with 
some partial overlap observed in both temporal and parietal regions. 3D feature representations 
(blue) yielded only two significant clusters located in the left middle occipital and temporal 
regions. This weak representation of 3D feature in both EEG and fMRI is likely due to their 
temporal and spatial heterogeneity – different 3D spatial features might be encoded at distinct 
times and in different brain regions. Supporting this, Figure S2 shows the number of significant 
2D and 3D features over time and brain space, indicating that 3D features tend to emerge later 
than 2D and depth features and are distributed across a broader range of cortical areas, from 
posterior to anterior, albeit with lower consistency. Together, these results highlight a 
spatiotemporal gradient in the encoding of spatial features – across time, progressing from early 
2D to later depth and 3D representations; and across space, shifting from occipital to frontal 
regions, with 2D features dominant posteriorly and depth and 3D features engaging more 
anterior areas. 

 
Figure 2  Grouped spatiotemporal representation of 2D, depth, and 3D spatial features. 
(A) EEG time courses of representational similarity, averaged across 2D (x, y, r, θ), depth (z), and 3D (r-
3D, ϕ, r-3D-hc, ϕ-hc) features. Colored dots indicate significant timepoints (permutation test, cluster-
corrected, p < .01). (B) fMRI searchlight results highlighting the cortical distribution of 2D, depth, and 
3D representations. Colored voxels indicate the similarity averaged among grouped features for the 
searchlight centered on that voxel was significant (permutation test, cluster-corrected, p < .01). 
 

A B
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Spatiotemporal representations of individual spatial features 
Then we further visualized the spatiotemporal representations of individual spatial features in 
time and brain space. To dissect the temporal dynamics of the 9 individual spatial features, 
Figure 3A shows the EEG RSA time courses of representation strength in detail, grouping the 
features according to their coordinate system(s). To quantify the timing of representational 
emergence and peak, we calculated the significant time windows for each feature dimension 
(Figure 3A), and extracted the onset and peak latencies for each feature at the individual-subject 
level (Figure 3B). Onset latency was defined as the first timepoint at which representational 
similarity was significant, and peak latency was defined as the timepoint at which the maximal 
partial correlation occurred. Additionally, we averaged representational similarity values within 
three broad time windows: 0-240 ms, 240-740 ms, and 740-1800 ms (Figure 3C). During the 
early window (0-240 ms), 2D features such as x, y, and θ  exhibited significant representational 
similarity. In the middle window (240-740 ms), x and θ  remained significant, while r and 3D Φ 
features also exhibited significant representational similarity. In the late window (740-1800 ms), 
the position-in-depth z feature became significant, along with persisting r and θ, but no longer x 
and y features.  

 

Figure 3 Dynamic encoding of spatial features in EEG. 

A
Cartesian Coordinate Cylindrical Coordinate

Spherical Coordinate Spherical-hc Coordinate

B Onset Latency

Peak Latency

Dynamic Representations of Different Spatial Features

C 0-240ms 240-740ms 740-1800ms
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(A) Time-resolved representational similarity (partial Spearman correlation) between EEG temporal 
RDMs and the nine hypothesis-based spatial feature RDMs, grouped by spatial coordinate systems. 
Shaded areas indicate ±1 SEM across participants. Colored dots indicate significant timepoints 
(permutation test, cluster-corrected, p < .01). (B) Onset and peak latencies of each spatial feature’s EEG 
representational similarity result. Dots denote individual participants; error bars indicate SEM. (C) 
Averaged representational similarity in three time windows (0–240 ms, 240–740 ms, 740–1800 ms). Dots 
denote individual participants; error bars indicate SEM; asterisks denote features with significant group-
level similarity (permutation test, p < .01). 
 

Figure 4A shows the parallel fMRI RSA analysis, revealing partially overlapping but dissociable 
cortical topographies of individual spatial feature representations. The 2D features – x, y, r, and θ 
– were most strongly represented in traditional visual cortices, including early visual occipital 
cortex, ventral temporal cortex, and posterior parietal cortex, though x and y representations in 
particular seemed to extend further along both the ventral and dorsal visual pathways. In 
contrast, the position-in-depth z feature showed more restricted activation patterns. Most of the 
3D features, such as r-3D, r-3D-hc, and ϕ-hc, exhibited distributed representations more heavily 
focused in frontal and parietal regions, though ϕ representations were more focused in occipital 
visual cortex.  

We also quantified these representational similarity patterns within predefined functional and 
anatomical ROIs (Figure 4B). Early visual areas (V1–V4) showed robust encoding of 2D x, y, r, 
and θ features (p < 0.01, permutation test, cluster-based corrected), consistent with their known 
2D retinotopic organization. Depth feature, z, was significantly represented in V3b and VO1, 
areas previously associated with perception of depth information. 3D features such as r-3D were 
significantly represented in dorsal areas including V3v, V3a, and IPS1-5. r-3D-hc were 
significantly represented in V3v and IPS0. Φ was significantly represented in V2d, V3d, V3a, 
V4, LO1, LO2, and MT. And Φ-hc was significantly represented in V3a, V3b, VO1, VO2, and 
FEF. Notably, medial temporal lobe structures such as the hippocampus, parahippocampal gyrus, 
and entorhinal cortex showed no significant representation of any individual spatial features. 

For additional exploration and hypothesis-testing beyond these pre-defined ROIs, our full dataset 
and code are openly available and easily integrable with various atlases and parcellations.   
Combined visualization of EEG and fMRI results are also illustrated in Supplementary Video 1. 
For the remainder of this paper, we now turn to additional theoretically-driven questions about 
3D spatial representation and integration enabled by this approach. 
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Figure 4  Spatial encoding of spatial features in fMRI. 
(A) fMRI searchlight representational similarity (partial Spearman correlation) results for each spatial 
feature, displayed on inflated cortical surfaces. Colored voxels indicate the searchlight centered on that 
voxel was significant (permutation test, cluster-based corrected, p < .01). (B) ROI-based RSA results 
showing group-level representational similarity across 25 predefined ROIs. Asterisks indicate significant 
feature representations (permutation test, p < 0.01). Dots denote individual participants. Error bars 
indicate SEM. 
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Are different spatial coordinate systems preferentially represented across time and brain 
space? 
Building on the feature-level analysis, we next examined if the human brain is representing 
visual space in a particular spatial coordinate system(s) at different points in time or brain space. 
We defined a coordinate system as completely represented if all individual constituent features 
within that coordinate system were significantly represented. 

For the 2D coordinate systems, EEG-based results revealed early complete representations of 2D 
Cartesian coordinate system and more sustained complete representations of 2D Polar coordinate 
system (Figure 5A), with the Polar representation significantly stronger than Cartesian in the 
later time window (Figure 5B). The fMRI-based results (Figure 5C) revealed significant 
evidence of both 2D Cartesian and Polar representations in classic visual areas, but strikingly, the 
cortical topographies were largely dissociated. Polar representations were more spatially 
confined in early visual cortex and more foveal areas, with the Cartesian representations showing 
more widespread activation into peripheral visual areas and across higher-level dorsal and 
ventral visual pathway regions, extending into later temporal, parietal, and some prefrontal areas. 

In terms of the 3D coordinate systems, these representations emerge later than the 2D 
representations in time, and with much sparser cortical coverage. With EEG we found brief 
complete representations of 3D Cartesian and 3D Spherical coordinate systems, and more 
sustained complete representations of 3D Cylindrical (Figure 5A-B). With fMRI, complete 3D 
coordinate representations were far more restricted. While the individual spatial features were 
broadly distributed, only small patches of cortex showed significant encoding of all three 
features in 3D Cartesian (x, y, and z) and 3D Spherical (r-3D, θ, Φ) coordinate systems, and no 
voxels were significant for the other two 3D complete coordinate systems (Figure 5C). These 
findings suggest that although multiple 3D coordinate systems may be partially engaged in a 
given region, only a subset exhibit spatially overlapping or temporally stable complete encoding 
of all constituent spatial features during perception. As a supplementary analysis for these four 
different 3D coordinate systems, we relaxed the criterion for complete representations to 
examine emergent representations – defined as the presence of at least one significantly encoded 
coordinate-specific feature (i.e., a feature uniquely associated with that coordinate system – e.g., 
r is specific to the 3D Cylindrical coordinate, while x and y are unique to the 3D Cartesian 
system) from each 3D coordinate system, and found more widespread representations with 
consistent regional preferences (Figure S3). 
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Figure 5 Spatiotemporal representations of complete coordinate systems (all feature components 
within a coordinate system significant). (A-B) EEG Representational similarity results. (A) Time courses 
of significant complete representations of 2D and 3D coordinates. Thinkened lines and Colored dots 
indicate significant timepoints (permutation test, cluster-corrected, p < .01). (B) EEG representational 
similarity for each complete coordinate system averaged over three time windows (0–240 ms, 240–740 
ms, 740–1800 ms). Dots denote individual participants. Asterisks indicate significance (permutation test, 
p < 0.01); error bars indicate SEM. (C) fMRI searchlight maps of complete coordinate representations. 
Voxels were labeled as significant if they showed representational similarity for all features in a certain 
coordinate system (permutation test, cluster-based corrected, p < .01). 
 

Does the human brain also represent spatial locations through integrated 2D and 3D 
geometric distances? 
While the preceding analyses focused on the encoding of individual spatial features and their 
combinations, it remains unclear whether the brain also processes spatial location in an 
integrated, geometric manner – that is, whether it could form a unified 2D or 3D positional 
coding pattern which reflects not the individual feature dimensions but their combined geometric 
relationships in space. For example, two objects that differ by one unit horizontally and one unit 
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vertically would be separated by √2 units in an integrated 2D Euclidean space. A feature-based 
encoding scheme might treat these two objects as distinct along independent horizontal and 
vertical maps, while a geometric distance representation would capture their spatial dissimilarity 
as a function of their combined distance in this space. Critically, such geometric distance 
representations highlight a fundamentally different kind of spatial information. While feature-
based maps may support tasks like localizing and reaching toward a single object, geometric-
distance-based codes may underlie the perception of global spatial structure and inter-object 
relationships. 

 

 
Figure 6 Spatiotemporal representations of 2D and 3D geometric distance. 
(A) Two geometric distance RDMs capturing holistic spatial location similarity based on 2D and 3D 
Euclidean distances across conditions. Top row shows geometric representations of an example pair of 
stimuli (Position A and Position B) and how dissimilarity is calculated based on the Euclidean distance 
between two positions in 2D or 3D space. Bottom row shows the 64x64 RDM for each geometric 
distance. (B) Time-resolved representational similarity (partial Spearman correlation) between EEG 
temporal RDMs and the two geometric distance RDMs. Shaded areas indicate ±1 SEM across 
participants. Colored dots indicate significant timepoints (permutation test, cluster-corrected, p < .01). (C) 
fMRI searchlight representational similarity (partial Spearman correlation) results for 2D and 3D 
geometric distances, displayed on inflated cortical surfaces. Colored voxels indicate the searchlight 
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centered on that voxel was significant (permutation test, cluster-based corrected, p < .01). (D) ROI-based 
RSA results showing group-level representational similarity of 2D and 3D geometric distances across 25 
predefined ROIs. Asterisks indicate significant feature representations (permutation test, p < 0.01). Dots 
denote individual participants. Error bars indicate SEM. 
 

To test this, we constructed two geometric distance RDMs (Figure 6A): a 2D geometric distance 
RDM based on pairwise Euclidean distances in the 2D plane, and a 3D geometric distance RDM 
based on Euclidean distanced in full 3D space. These geometric distance RDMs capture the 
similarity structure that would be expected if the human brain encoded locations holistically 
rather than feature-by-feature. We first examined the extent to which neural patterns tracked 
these 2D and 3D geometric distance models, computing partial correlations between the neural 
RDMs and each hypothesis-based geometric distance RDM while controlling for the other (2D 
or 3D). As shown in Figure 6B, EEG analyses revealed robust encoding of both 2D and 3D 
geometric distances. Notably, 2D geometric distance representations emerged rapidly and 
remained significant throughout the epoch (40-1800 ms), and 3D geometric distance 
representations emerged later (480-740, 980-1180, and 1200-1800 ms) and were weaker than 2D 
geometric distance representations. fMRI analyses (Figure 6C-D) showed broad cortical 
representation for 2D geometric distance across the visual cortex. In contrast, 3D geometric 
distance representations were more spatially restricted and sparser, localized to patches in 
parietal, lateral occipital, and prefrontal regions, such as FEF. This spatiotemporal dissociation 
suggests a possible progression from planar to volumetric spatial integration in visual processing, 
analogous to the progression from 2D to 3D individual spatial feature dimensions. 

While these initial geometric distance analyses revealed robust 2D to 3D representations, they 
may still partially reflect variance attributable to individual spatial features, given the possible 
collinearity between geometric distances and feature dimensions. To further isolate the unique 
contributions of these geometric distance representations beyond feature-level coding, we 
repeated the analysis above while additionally controlling for all nine individual spatial feature 
RDMs. This approach removes variance shared with feature-based coordinate representations, 
isolating the residual geometric integration component that may be otherwise masked by spatial 
features. EEG analyses (Figure 7A) revealed that unique 2D geometric distance representations 
persisted from early to late stages (100-240, 320-960, and 1320-1680 ms), whereas uniqe 3D 
geometric distance representations emerged only later (620-900 and 940-1160 ms). fMRI 
analyses (Figure 7B and 7C) revealed widespread unique 2D geometric distance representations 
across the visual cortex. However, 3D integration was highly sparse, localized to small 
significant clusters in precentral gyrus, superior temporal gyrus, caudate, and the 
parahippocampal cortex – a region known to be involved in spatial navigation and scene 
representation (Aminoff et al., 2013; R. Epstein et al., 1999, 2003; R. A. Epstein, 2008). 

Together, these findings demonstrate that the human brain encodes spatial locations not only via 
independent features or coordinate systems but also through holistic geometric distance codes. 
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Moreover, 2D geometric integration emerges earlier, stronger, and more widely distributed, 
whereas 3D geometric integration emerges later, weaker, and in more sparsely localized higher-
order regions. 

 

 
Figure 7 Unique spatiotemporal representations of 2D and 3D geometric distance beyond spatial 
feature coding. 
(A) Time-resolved representational similarity (partial Spearman correlation, also controlling nine feature 
RDMs) between EEG temporal RDMs and the two geometric distance RDMs. Shaded areas indicate ±1 
SEM across participants. Colored dots indicate significant timepoints (permutation test, cluster-corrected, 
p < .01). (C) fMRI searchlight representational similarity (partial Spearman correlation, also controlling 
nine feature RDMs) results for unique 2D and 3D geometric distances, displayed on inflated cortical 
surfaces. Colored voxels indicate the searchlight centered on that voxel was significant (permutation test, 
cluster-based corrected, p < .01). (D) ROI-based RSA results showing group-level representational 
similarity of unique 2D and 3D geometric distances across 25 predefined ROIs. Asterisks indicate 
significant feature representations (permutation test, p < .01). Dots denote individual participants. Error 
bars indicate SEM. 
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Are individual differences in depth perception reflected in neural 3D spatial coding? 
Finally, we asked whether any of these spatiotemporal neural signatures of 3D visual processing 
might carry behavioral relevance in terms of 3D visual perception. Although our main task here 
involved passive viewing of 3D stimuli, each participant also participated in a behavioral session 
of the 3D cube adjustment task. We thus performed an exploratory analysis examining whether 
individual differences in depth perception were related to neural encoding of 3D-related 
information. For each participant, we extracted the slope parameter α (depth magnitude gain) 
from the Cube Adjustment Task, which reflects how strongly binocular disparity must be scaled 
to achieve a subjectively matched depth distance (perceived depth scaling). We then correlated 
these behavioral depth magnitude gains with each participant’s maximum neural representational 
similarity (across fMRI searchlight units; EEG had too few subjects to be meaningful for this 
analysis) for different neural measures including the five depth- or 3D-related spatial features 
and the average of the four 3D features, the four different 3D coordinate systems, and 3D 
geometric distance and unique 3D geometric distance representations.  

Among these measures, only the fMRI representation of the 3D radius feature (r-3D) showed a 
significant positive correlation with behavioral slope (r=.7406, p=.0143), indicating that 
participants with steeper disparity-to-depth mappings exhibited stronger neural encoding of 3D 
radius. All other correlations were non-significant (Figure S4), though we caution too much 
emphasis on this exploratory analysis of small sample size. That said, this finding suggests an 
intriguing potential link between individual differences in perceived depth magnitude and the 
strength of 3D spatial representations in the human brain. 

 

 
Figure 8 Correlation between behavioral depth magnitude gain and neural 3D radius encoding in 
fMRI. 
Each dot represents one participant. Shaded area indicates 95% confidence interval for the fitted 
regression line. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2025. ; https://doi.org/10.1101/2025.08.03.668371doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.03.668371
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Discussion 

In this study, we combined high temporal-resolution EEG and high spatial-resolution fMRI 
recordings, computational approaches, and perceptual depth in binocular disparity to unfold how 
the human brain encodes 3D spatial location. Our novel findings translate into three principal 
contributions – methodological, theoretical, and open-science. Methodologically, we developed a 
multimodal framework combining individualized depth calibration, dense 3D spatial sampling, 
and partial correlation-based RSA applied to both EEG and fMRI. This allowed us to disentangle 
the neural representation of a rich set of spatial features across multiple 2D and 3D coordinate 
systems, and to identify feature-specific, coordinate-preferred, and geometric representations in 
time and brain space. Theoretically, our results demonstrate that the human brain flexibly 
encodes spatial information using multiple spatial features in multiple coordinate systems, 
including unique contributions of not only 2D features but also depth and 3D features, each 
expressed at different temporal stages and in distinct brain regions. We further provide evidence 
for higher-order spatial integration, suggesting that the human brain represents not only isolated 
feature dimensions but also relational geometric structure in 2D and 3D space. Together, our 
findings suggest that the human brain initially builds representations of 2D spatial features and 
2D geometric distances, then 3D feature representations, and finally builds structured, unified 
representations of 3D spatial location (Figure 9). From an open-science perspective, we present 
the first publicly available large-scale neuroimaging dataset of 3D visual perception, which 
includes individualized depth calibration and multimodal (EEG and fMRI) recordings. We hope 
this resource will support future investigations into neural representations of spatial location and 
coordinate-system dynamics in real-world perception and behavior. 
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Figure 9 Time courses of spatial processing in human brains. 
Summary schematic of the time courses of significant spatial feature-level representations, coordinate-
level complete representations, and geometric distance representations (permutation test, cluster-
corrected, p < .01). 
 

Previous studies have primarily focused on a limited set of classic 2D or depth features (J. M. 
Carlson et al., 2011; Golomb & Kanwisher, 2012; Graumann et al., 2022; Kravitz et al., 2010). 
Most previous studies have typically analyzed these dimensions independently (Alvarez et al., 
2021; Bridge & Parker, 2007; Finlayson et al., 2017), without quantitatively relating perceived 
depth distances to horizontal and vertical distances in 2D space. In contrast, our study 
systematically incorporates a broad set of spatial features defined across multiple coordinate 
systems in both 2D and 3D space – not only including 2D and depth features, but also extending 
to previously unexamined 3D features such as 3D radius and 3D polar angle. This was made 
possible by our ability to perceptually calibrate and precisely quantify the 3D positions of stimuli 
in 3D space. Critically, we employed a denser sampling of spatial locations (64 in total) within 
3D space, which enabled us to disentangle overlapping feature representations and robustly 
analyze their contributions in human brains. This comprehensive feature space allowed us to 
consider multiple types of 3D geometric relationships rather than only comparing 2D and depth 
axes, allowing for a more complete assessment of how the brain encodes spatial information. 
Additionally, our use of partial correlation representational similarity analysis enabled us to 
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isolate the unique contributions of each spatial feature, going beyond standard correlation-based 
approaches that may conflate shared variance among features and misestimate the 
representational patterns (see correlation-based RSA results in Figure S5-S8). By including a 
richer and more diverse set of features, we were able to disentangle the unique neural 
representations of different spatial features.  

Our results reveal a clear gradient in both time and brain space: 2D features (e.g., x, y, r, θ) 
emerged early in the EEG time course and were broadly represented across occipital cortex in 
fMRI. In contrast, the depth feature (z) appeared later in time and showed more restricted spatial 
activation, which overlapped with parietal and dorsal regions. 3D features (e.g., r-3D, Φ, r-3D-
hc, and Φ-hc) showed anatomically distinct representations in fMRI and, although no significant 
time window when averaged together, individual 3D features exhibited distinct temporal profiles 
in EEG. From a temporal perspective, prior studies have shown that 2D position could be 
decoded from EEG signals within very early visual processing (Graumann et al., 2022; 
Hogendoorn & Burkitt, 2018), consistent with our findings of 2D features. However, to our 
knowledge, no previous EEG or MEG studies have examined the temporal dynamics of depth or 
3D spatial features. From a spatial perspective, our fMRI results support and substantially extend 
prior findings that spatial encoding shifts from 2D to depth representations along the visual 
hierarchy (Finlayson et al., 2017; Henderson et al., 2019). Indeed we showed in a supplementary 
analysis a convincing replication of Finlayson et al., 2017’s analysis (correlation-based MVPA 
instead of partial correlation-based RSA) and results (spatial transition from 2D (the average of x 
and y) to depth (z) along the visual hierarchy; Figure S1). Crucially, our study extends these 
findings in several important ways. First, we employed a much denser sampling of 64 3D spatial 
locations, which enabled us to characterize a richer set of spatial features across multiple 
coordinate systems – including not only traditional 2D and depth features, but also 3D features in 
multiple 3D coordinate systems. Second, we introduced integration analyses that revealed 
higher-order encoding of relational spatial geometry, beyond individual feature encoding. Third, 
by combining EEG and fMRI, we provided a multimodal spatiotemporal map of 3D spatial 
representation, revealing how different spatial dimensions emerge over time and are distributed 
across brain regions. Together, these advances allowed us to capture both the temporal dynamics 
and anatomical organization of spatial representations with greater specificity than prior studies.   

A key finding from our study is that the human brain may not rely on a single coordinate system 
of spatial encoding. Instead, we found temporally and spatially distinct patterns for different 
coordinate systems, including 2D Cartesian, 2D Polar, 3D Cartesian, 3D Cylindrical, 3D 
Spherical, and 3D Spherical-hc coordinates. Our EEG results demonstrated that coordinate 
systems may differ in their representations over time, with a progressive timecourse across 
coordinate systems based on their complete representations, from early 2D Cartesian 
representations, to 2D Polar, followed by 3D Spherical, 3D Spherical-hc, and finally 3D 
Cylindrical representations. Notably, 2D Polar and 3D Cylindrical coordinate representations 
persisted longer in time. In parallel, our fMRI results showed that Cartesian- and Polar-format 
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spatial representations were expressed in distinct cortical regions. Although we identified only 
small patches of cortex showing a complete representation of 3D Cartesian – i.e., significant 
encoding of x, y, z within the same region – we did not observe complete representations of other 
3D coordinate systems. This may reflect functional specialization, where different 3D features 
are processed across distributed neural populations, rather than being jointly encoded in a single 
region. Alternatively, it may be due to limited statistical power in detecting more spatially 
distributed or subtle effects, particularly for formats with higher redundancy or interdependence. 
Together, these findings suggest that the brain may maintain multiple spatial codes in parallel, 
which may suggest that our visual system may flexibly switch between coordinate systems or 
apply multiple systems simultaneously, depending on the computational demands of perception 
or action. 

Beyond encoding individual features, a key novel contribution of our study is the identification 
of 2D and 3D geometric distance representations. Using integration RDMs based on 2D or 3D 
Euclidean distances and partial correlations, we found reliable evidence of 2D and 3D spatial 
integration in both EEG and fMRI data, which reflects the combined geometric relationships in 
2D or 3D space rather than the individual feature dimensions. While 2D geometric distance was 
broadly represented, 3D geometric distance emerged only in specific regions, such as the 
parahippocampal cortex, and at middle and late timepoints in EEG. Interestingly, the 
parahippocampal cortex exhibited significant unique 3D geometric distance representation only 
after controlling for feature-level RDMs (Figure 7C), but not in the initial analysis (Figure 6D). 
This pattern likely reflects the removal of noisy variance shared with low-level spatial features, 
revealing a residual high-level 3D integration signal in this region. Such a dissociation is 
consistent with the parahippocampal cortex’s proposed role in encoding abstract spatial 
relationships, such as real-world navigation and scene perception (Aminoff et al., 2013; R. 
Epstein et al., 1999, 2003; R. A. Epstein, 2008), beyond simple feature-based metrics. 
Importantly, our geometric distance RDMs were designed to capture the spatial relationship 
among stimuli in terms of their relative locations – how far each stimulus is from the others – 
rather than their absolute positions with respect to the reference point. This finding aligns with 
previous studies emphasizing the brain is sensitive not only to absolute location but also to 
relative spatial information (Hayworth et al., 2011; Roth, 2016), which underlies functions such 
as spatial comparison, grouping, and navigation (Berens et al., 2021; Byrne et al., 2007; Roth, 
2016; Uchimura et al., 2015). Together, our results may suggest that human brains encode not 
only feature-based spatial information but also higher-order spatial structure that could capture 
relational geometry among multiple objects in space. 

In addition, in an exploratory analysis we observed that individual differences in subjective depth 
perception from the behavioral Cube Adjustment Task were positively correlated with the neural 
encoding strength of fMRI representations of the 3D radial spatial feature (r-3D). This finding 
suggests a potential link between perceptual scaling and neural coding of 3D radius (distance) 
information that participants who require larger disparity changes to perceive equivalent depth 
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distances may exhibit stronger neural coding of 3D radius information. While intriguing, due to 
the modest sample size, future studies with larger cohorts are needed to determine whether this 
relationship reflects a robust and generalizable neural signature of individual variability in depth 
perception. 

Building on these findings, an important open question concerns the reference frames that 
underlie these spatial codes. Our analyses primarily defined locations relative to a gaze-centered 
origin, consistent with retinotopic or egocentric representations, with the exception of the head-
centered Spherical (Spherical‑hc) coordinates. However, because participants maintained central 
gaze fixation, our paradigm does not directly dissociate retinotopic from spatiotopic encoding, 
nor egocentric from allocentric coding (Burgess et al., 2007; Byrne et al., 2007; Crespi et al., 
2011; Duhamel et al., 1997; Filimon, 2015; Gardner et al., 2008; Golomb & Kanwisher, 2012; 
Klatzky, 1998; Zaehle et al., 2007). Nonetheless, the involvement of regions such as the 
parahippocampal cortex—known for allocentric and scene-based representations (Aguirre et al., 
1996; Ekstrom et al., 2014; Parslow et al., 2004; Rolls, 2020; Zaehle et al., 2007) – raises the 
possibility that multiple reference frames may coexist across cortical systems. Future work could 
explicitly manipulate fixation or use immersive environments to clarify how these reference 
frames interact in supporting 3D spatial perception. 

Beyond the specific findings reported here, we believe the broader impact of this project lies in 
the resources and methodological framework it offers. To our knowledge, this study introduces 
the first large-scale, multimodal neuroimaging dataset for 3D spatial perception, and we provide 
a first- and novel-step in investigating the spatiotemporal neural representations of 3D visual 
perception in the human brain. We have publicly released this data, which we hope will serve as 
a foundation for future research efforts – not only to further advance our understanding of the 
neural mechanisms underlying 3D perception, but also to support translational applications such 
as decoding spatial location from brain activity in brain-computer interface (BCI) contexts across 
both cognitive neuroscience and bioengineering domains. Importantly, by making this dataset 
openly available, we also aim to enable the community to test alternative hypotheses and 
different models of 3D space representation, including approaches or feature dimensions beyond 
those we have explored here. In addition to the dataset, our work offers a generalizable 
methodological framework that integrates individual perceptual calibration, dense 3D spatial 
sampling, and multimodal RSA to probe high-resolution spatial encoding across both time and 
brain space. 

While our study provides new insights into spatiotemporal encoding of 3D spatial information, 
several limitations should be acknowledged and addressed in future work. One potential concern 
in our study is that eccentricity-based cortical magnification might influence activation strength 
across the visual cortex (Deyoe et al., 1996; Dougherty et al., 2003; Harvey & Dumoulin, 2011; 
Sereno et al., 1995; Wandell et al., 2007). This issue arises because our stimulus locations were 
uniformly distributed in Cartesian coordinates, which do not account for the non-linear 
expansion of cortical surface area near the fovea. As a result, representational analyses relying on 
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differences in neural activation patterns across the visual field may be biased. To mitigate this 
issue, our RSA computations were based on Spearman partial correlations, a rank-based method 
that is robust to differences in scale and nonlinearity, and controls for shared variance across all 
feature models. This approach could minimize the influence of global activation magnitude and 
cortical surface area differences. Nevertheless, the cortical magnification may still lead to 
underestimation or distortion of representational similarity results in certain regions. Future 
experiments could consider eccentricity-informed spatial sampling to complement our findings. 
Another limitation of the present study is that our exploration of 3D spatial encoding was 
restricted to depth defined by binocular disparity. While binocular disparity is a powerful and 
well-studied cue to depth, real-world 3D perception relies on the integration of multiple depth 
cues, including motion parallax, texture gradients, relative size, shading, occlusion and 
perspective (Howard, 2012; Welchman, 2016). It remains unknown whether the spatiotemporal 
dynamics we observed for disparity-defined 3D representations generalize to other depth cues or 
to cue-integrated depth perception. Future work should therefore examine how different depth 
cues are represented individually and jointly in the brain, and how their integration shapes 
holistic 3D spatial representations. Also, an important direction for future research concerns how 
task demands modulate spatial encoding. In the current study, we employed a passive viewing 
paradigm to establish a baseline map of 3D spatial representations under minimal cognitive 
engagement. However, future studies could incorporate multiple active tasks to test how spatial 
representations are dynamically shaped by behavioral goals and cognitive context. Future work 
can build on our methodological framework to investigate coordinate-system dynamics in active 
viewing, naturalistic environments, or memory-guided navigation. These extensions will help us 
clarify not only why human brains apply different systems to represent spatial locations, but also 
how 3D spatial representations interface with eye movements, motor control, attention, and 
decision-making processes. 

 

 

Methods 

Participants 

Ten participants participated in the study (7 females and 3 males, mean age = 26.0 ± 5.5 years) 
for monetary compensation ($15/hr for the behavioral session, and $20/hr for the fMRI and EEG 
sessions). Eight participants each completed one behavioral session, two EEG sessions, and two 
fMRI sessions in five separate days. The other two participants completed one behavioral session 
and two fMRI sessions in three separate days. All participants first completed the behavioral 
session, and subsequently did the neuroimaging sessions, scheduled according to participant 
availability and the scanner and EEG lab calendars. All participants had normal or corrected-
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normal vision, and were prescreened for MRI eligibility. The study protocol was approved by 
The Ohio State University Biomedical Sciences Institutional Review Board.  

Our sample size was determined based on prior neuroimaging studies using large-scale EEG 
and/or fMRI to investigate high-dimensional neural encoding (Allen et al., 2022; Chang et al., 
2019; Gifford et al., 2022; Hebart et al., 2023). Given the within-subject design and the large 
number of trials per participant across five sessions, the dataset affords high sensitivity to 
spatiotemporal representational structure at both individual and group levels. While a larger 
sample may improve generalizability, our findings reflect robust effects across participants and 
provide a strong foundation for future replication and extension studies. 

General Experimental Setup 

Dynamic random dot stereogram stimuli (RDS) were generated using Psychtoolbox extension 
(Brainard, 1997) for MATLAB (Math Works). Depth from binocular disparity was achieved 
using red/green anaglyph glasses paired with Psychtoolbox’s stereomode. For all the experiments 
in our study, we created a 3D space composed of a low-contrast, large background field (12° × 
12°) placed at the central depth plane of the screen, framed with additional depth cues making a 
3D reference frame. The frontmost and backmost depth frames were rendered with disparities of 
+20 arcmin and -20 arcmin, respectively, creating a 40 arcmin total depth range. The background 
field consisted of static random dot stimuli (RDS; 5 dots/deg2) comprised of light and dark gray 
dots (each sized 0.18° × 0.18°) on a mid-gray background. To enhance the 3D percept and 
provide a stable spatial reference across depth, we also displayed visual depth cues composed of 
vertical and horizontal grid lines framing the 3D space outside the stimulus area. This grid 
formed a perspective-like scaffold, giving observers a consistent visual structure suggestive of 
depth to encourage perception of a 3D space. The main experimental stimuli were cubes of high-
contrast dynamic RDS (each cube sized 2.4° × 2.4° × 2.4°, composed of 0.18° × 0.18° white and 
back grey dots, with 10 dots/deg2), presented at different locations within this 3D space, as 
described in the sections below. 

For behavioral and EEG sessions, stimuli were presented on a 21-inch LCD monitor (resolution 
1920 × 1080 at 240 Hz), and participants were seated at a chinrest 74 cm from the monitor. For 
fMRI sessions, stimuli displayed with a DLP projector onto a screen mounted in the rear of the 
scanner (resolution 1280×1024 at 60 Hz), and participants viewed from a distance of 74 cm via a 
mirror above their heads attached to the head coil. 

Behavioral Session 

The behavioral session included three tasks. The first two tasks were used to confirm that the 
participants could accurately perceive and discriminate different depth distances with RDS from 
binocular disparity, and the third task was used to measure different disparity parameters 
corresponding to different depth distances. In addition, the extensive exposure during the whole 
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behavioral session served to acclimate participants to the depth information in these displays, 
enhancing their sensitivity to depth cues in the subsequent main tasks. 

In Task 1 – Single stimulus depth judgement task, participants viewed a single 2.4° × 2.4° square 
patch of dynamic RDS presented at the 2D center of the screen, appear either in front or behind 
the screen (fixation) plane. The stimulus depth was set to one of four disparity levels: +15, +5, -
5, -15 arcmin (relative to the fixation depth plane). Participants were asked to judge whether the 
stimulus appreared in front of (closer to them) or behind (further away) the screen. Each trial was 
self-paced with no time limit and no eye movement restrictions. After participants responded, 
feedback indicating “correct” or “incorrect” was displayed, and the trial ended. Participant 
completed four blocks in total, each consisting of 24 trials (4 depth levels × 6 repetitions), with 
trials presented in a fully randomized order. After completing the first two blocks, participants 
reversed the orientation of their glasses (i.e., left-red/right-green or left-green/right-red). In one 
block per orientation, the key mapping was “A” for “in front” and “L” for “behind”, while in the 
other, the mapping was reversed (“L” for “in front”, “A” for “behind”). 

In Task 2 – Two-stimulus depth judgment, participants viewed two dynamic RDS patches 
presented simultaneously to the left and right of central fixation (each 2.4° × 2.4°, with center 
positions 3° horizontally from fixation). The two RDS patches were presented at different depth 
levels, forming one of six predefined disparity pairs: left: −15 arcmin / right: −5 arcmin; left: −5 
arcmin / right: −15 arcmin; left: −5 arcmin / right: +5 arcmin; left: +5 arcmin / right: −5 arcmin; 
left: +5 arcmin / right: +15 arcmin; left: +15 arcmin / right: +5 arcmin. The two stimuli could 
both appear in front of, behind, or straddling the fixation (screen) depth plane. Participants were 
instructed to judge the relative depth of the two stimuli. At the beginning of each block, 
participants were informed whether they should report which stimulus was closer or which was 
farther. For example, in a "closer" block, participants pressed the 'A' key if they thought the left 
stimulus was closer, or the 'L' key if they thought the right stimulus was closer. Each trial was 
self-paced with no time limit and no restriction on eye movements. Once the participant 
responded, feedback (“correct” or “incorrect”) was displayed, and the trial ended. Participants 
completed four blocks, each consisting of 12 trials (6 depth pairs × 2 repetitions), presented in 
randomized order. After two blocks, the color orientation of the anaglyph glasses was reversed 
(left-red/right-green or left-green/right-red; counterbalanced across participants). For each 
anaglyph orientation, one block required judging which stimulus was closer, and the other 
required judging which was farther. 

All our ten participants showed > 90% accuracy in both Task 1 and 2, which verified that they 
were sensitive to the depth triggered by binocular disparity. Then they did the Task 3. 

In Task 3 – Cube adjustment task, participants viewed four RDS patches (each 2.4° × 2.4°) 
presented simultaneously in the upper-left, upper-right, lower-left, and lower-right quadrants of 
the screen. These four stimuli corresponded to the four vertices of a square shape defined by their 
farthest edges from fixation. Across trials, the horizontal and vertical distances of this “virtual” 
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square were simultaneously manipulated to form one of 11 physical sizes: 5.4°×5.4°, 6.0°×6.0°, 
6.6°×6.6°, 7.2°×7.2°, 7.8°×7.8°, 8.4°×8.4°, 9.0°×9.0°, 9.6°×9.6°, 10.2°×10.2°, 10.8°×10.8°, or 
11.4°×11.4°. Crucially, the four stimuli were arranged such that two diagonally opposite patches 
were presented in front of the fixation plane and the other two behind the fixation plane, with 
equal absolute disparities (i.e., symmetrical distance from fixation). The initial disparity was 
randomly selected on each trial. Participants performed a cube adjustment task: using the 
up/down arrow keys, they simultaneously moved the front and back planes either closer to or 
farther from the fixation plane, until they perceived the four vertices as forming a cube in 3D 
space. Note that while depth positions varied, the 2D square size on the screen remained fixed 
within each trial. Each trial was self-paced with no time limit and no restriction on eye 
movements. Participants pressed the “Enter” key to confirm when they believed the 
configuration matched a cube, thus ending the trial. Participants completed two blocks of 66 
trials each (11 horizontal/vertical square sizes × 2 depth arrangements (half with top-left and 
bottom-right stimuli in front, and half with them behind) × 3 repetitions), with trials presented in 
random order. After the first block, the orientation of the anaglyph glasses was reversed (left-
red/right-green or left-green/right-red). This task allowed us to determine the individualized 
perceptually-matched binocular disparities corresponding to a range of reference distances from 
the fixation plane, ranging from 2.7° to 5.7° in 0.3° increments (i.e., half of the cube’s front-back 
extent). These distances reflect the amount of disparity required for a specific participant to 
perceive the four stimuli as forming a cube in 3D space, providing a participant-specific 
calibration of depth perception in stereoscopic space, allowing us to match the depth and 2D 
distances sampled in the main tasks. 

Individualized Depth Distance Quantification 

To establish a participant-specific mapping between perceived depth distance and binocular 
disparity, we analyzed data from the Cube Adjustment Task (Task 3). We fit a linear function to 
each participant’s data using least-squares regression, with perceptual matched disparity as the 
dependent variable and reference distance as the independent variable. Given that a depth 
distance of 0° should yield zero disparity, we constrained the fit to pass through the origin, 
yielding a function of the form Ydisparity = αXreference_distance. The slope α captures the participant-
specific transformation from reference distance (in degrees of visual angle) to perceptually-
matched binocular disparity (in arcmin). This slope can be interpreted as an individualized 
“depth magnitude gain”, indexing how strongly binocular disparity must be scaled to achieve a 
subjectively matched depth distance (perceptual depth scaling). Figure S9 shows the model 
fitting results for all ten subjects. 

This individualized linear model was used to compute the disparity corresponding to any desired 
depth distance for each participant, enabling precise, perceptually calibrated depth manipulation 
across all subsequent experimental sessions. 

EEG Session 
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In each EEG session, during each trial, participants viewed a small dynamic RDS cube stimulus 
(2.4° × 2.4° × 2.4°) presented at one of 64 possible 3D spatial locations. The 64 locations were 
defined by a 4 x 4 x 4 (horizontal x vertical x depth) grid with fixation at the origin ([0° 0° 0°]).  
The 64 possible stimulus locations were the intersections at the following grid coordinates: 
horizontal x position: -4.5°, -1.5°, 1.5°, 4.5° × vertical y position: -4.5°, -1.5°, 1.5°, 4.5° × depth 
z position: -4.5°, -1.5°, 1.5°, 4.5°. The exact amount of binocular disparity required to produce 
each depth position was individually calibrated for each participant using the linear function 
derived from the Cube Adjustment Task (behavioral Task 3). The stimulus was a cube centered 
on these locations, and our design of the cube size and spacing was to ensure that stimuli at 
adjacent locations were spatially independent, with no overlap in 3D space. Such separation was 
critical for disentangling neural activity patterns associated with individual spatial locations. 

Each stimulus was presented for 1.5 s, followed by a variable interstimulus interval (ISI) of 0.5-
0.7 s (uniformly jittered). Participants were instructed to maintain central fixation at all times. 
The fixation cue consisted of two concentric dark gray circles (outer diameter: 0.45°; inner 
diameter: 0.15°) with a light gray crosshair at the center, presented at coordinates [0,0,0]. To 
ensure attention and maintain fixation, participants performed a fixation-change detection task: 
on a small proportion of trials, the central cross briefly changed into an “X” shape, and 
participants were instructed to press the spacebar upon detecting the change. Participants 
completed 18 blocks in each session, each consisting of 128 trials (64 spatial locations × 2 
repetitions), with trials presented in fully randomized order. To control for any low-level color or 
contrast differences between eyes or monocular-based cues, participants reversed the orientation 
of the red/green anaglyph glasses across sessions, such that the red filter was on the left eye for 
once session and the right eye for the other. The order of initial color assignment was 
counterbalanced across participants. This flip manipulation counterbalanced which eye received 
the red versus green images across sessions, eliminating simple monocular or color‑based cues. 
Importantly, near and far positions had equal disparity magnitudes. Thus, our results cannot be 
explained by absolute disparity magnitude alone, but instead reflect neural coding of the 
perceived spatial location. 

fMRI Session 

In each fMRI session, participants completed ten to twelve main task runs (6.1 mins per run). 
Similar to the EEG blocks, each run consisted of 128 trials (64 spatial locations × 2 repetitions). 
On each trial, a dynamic RDS cube stimulus (2.4° × 2.4° × 2.4°) was presented for 1.5 s at one 
of the 64 spatial locations (same exact stimulus positions and presentation time as EEG task). 
Interleaved with the 128 stimulus trials were 42 blank trials (no stimulus presented), inserted 
randomly such that no more than two consecutive blank trials occurred, to achieve sufficient 
jitter for modeling rapid event-related fMRI BOLD activity. Participants were instructed to 
maintain fixation at the center of the screen and perform a fixation change detection task, 
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pressing the spacebar whenever the central fixation symbol changed from a “+” to an “x”; these 
fixation changes could occur on blank trials as well as stimulus trials. 

In addition to the main task runs, participants also completed two retinotopic mapping runs using 
standard rotating wedge stimuli (Engel et al., 1994; Sereno et al., 1995). High-contrast radial 
checkerboard patterns were presented as 60° wedges and flickered at 4 Hz. Maximal eccentricity 
was 16° and the central 1.6° foveal region was not stimulated (except for a central fixation 
point). One run rotated clockwise, and the another run rotated counter-clockwise through 7 
cycles with a period of 24 s/cycle. During these runs, participants fixated at the center of the 
display and presses a button every time the black fixation dot dimmed to gray. 

As with the EEG sessions, the anaglyph glasses direction was reversed across fMRI sessions, 
with the order randomized across participants.  

Eye Tracking 

Eye position was monitored with an EyeLink 1000 eye-tracking system in both EEG lab and the 
fMRI scanner. The eye tracker was calibrated using a nine-point grid method at the beginning of 
each neuroimaging session and re-calibrated as necessary. For fMRI, due to occasional loss of 
pupil signal in the scanner environment, fixation was primarily monitored in real time via the 
eye‑tracking display. Trials were not aborted or removed for poor fixation, but we visually 
monitored and verified that participants were maintaining central fixation on the vast majority of 
trials. For EEG, if gaze deviated by more than ~2° from fixation during the 1.5 s stimulus 
presentation, the trial was immediately aborted and a new trial started. 

EEG Acquisition 

EEG experiments were carried out at the EEG lab in Department of Psychology at The Ohio 
State University. EEG data were recorded using an elastic cap (Brain Products ActiCap) with 64 
active electrodes (including one online reference channel: FCz, and other 63 channels: FP1, FP2, 
AFz, AF3, AF4, AF7, AF8, Fz, F1, F2, F3, F4, F5, F6, F7, F8, FC1, FC2, FC3, FC4, FC5, FC6, 
FT7, FT8, FT9, FT10, Cz, C1, C2, C3, C4, C5, C6, T7, T8, CPz, CP1, CP2, CP3, CP4, CP5, 
CP6, TP7, TP8, TP9, TP10, Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8, Oz, 
O1, O2) arranged in the standard 10-20 layout, and a BrainVision actiCHamp amplifier at a 
sampling rate of 1000 Hz with the online filtering (between 0.1 Hz and 100 Hz). Electrode 
impedances were reduced to <20 kΩ before the commencement of each experiment session.  

fMRI Acquisition 

fMRI experiments were carried out at The Ohio State University Center for Cognitive and 
Behavioral Brain Imaging with a Siemens Prisma 3T MRI scanner using a 32-channel phase 
array receiver head oil. Functional data were acquired using a T2-weighted gradient-echo planar 
imaging (EPI) sequence (TR = 2000 ms, TE = 30 ms, flip angle = 72°; 2 × 2 × 2 mm voxel size; 
72 axial slices; no gap). The acquisition was aligned to the anterior commissure-posterior 
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commissure (AC-PC) plane. Multiband acceleration was applied using the CMRR mbep2d_bold 
sequence with a multiband factor of 3. A high-resolution T2-weighted turbo spin echo (TSE) 
sequence was acquired for hippocampal subfield segmentation (TR = 4800 ms, TE = 106 ms, flip 
angle = 135°; voxel size = 0.5 × 0.5 × 2 mm). Also, we collected a high-resolution MPRAGE 
anatomical scan (1 mm3) for each participant. 

EEG Preprocessing 

Offline EEG preprocessing was conducted in Python, using the MNE-Python package (Gramfort 
et al., 2013) along with customized scripts based on a previously published pipeline (Lu et al., 
2024). EEG data from two recording sessions for each participant were merged into a single 
dataset. A band-pass filter from 0.1 to 30 Hz was applied, and independent component analysis 
(ICA) was used to identify and remove artifacts related to eye blinks and eye movements 
(Drisdelle et al., 2017; Jung et al., 2000). Signals from channels TP9 and TP10, placed over the 
left and right mastoids, were used for re-referencing. The continuous EEG data were segmented 
into epochs from -200 ms to 1800 ms relative to stimulus onset. Baseline correction was 
performed by substracting the mean voltage of a 100 ms pre-stimulus period (-100 to 0 ms) for 
each trial and channel. This resulted in a matrix of preprocessed EEG data for each participant 
with dimensions 4,608 trials × 63 channels × 2,000 timepoints. 

To obtain location-specific event-related potentials (ERPs), we averaged the 72 repeated trials 
corresponding to each of the 64 stimulus location labels. The resulting data were then 
downsampled to 50 Hz by averaging every 20 consecutive timepoints. This procedure yielded an 
ERP matrix with dimensions 64 stimulus locations × 63 electrode channels × 100 timepoints for 
each participant, which was used for all subsequent analyses.  

fMRI Preprocessing 

fMRI data were preprocessed using Brain Vogager QX (Brain Innovation). Preprocessing 
included slice timing correction, head motion correction, temporal filtering, and normalization to 
Talairach space (Talairach & Tournoux, 1988). No spatial smoothing was applied to the data used 
for representational similarity analysis. A whole-brain random-effects general linear model 
(GLM) was run for all main task runs across fMRI sessions to calculate beta weights for each 
voxel, for each spatial location condition, for each participant. This yielded a beta-weight matrix 
for each participant with dimensions 64 stimulus locations × 432,216 voxels. Each participant’s 
cortical surface for each hemisphere was inflated and flattened into cortical surface space for 
retinotopic mapping. 

Retinotopic regions of interest (ROIs) including V1v, V1d, V2v, V2d, V3v, V3d, and V4 were 
functionally defined based on individual retinotopic mapping data. Additional ROIs—V3a, V3b, 
IPS0, IPS1–5, VO1, VO2, LO1, LO2, MST, MT, SPL1, and FEF—were defined using maximum 
probability maps from the Wang et al. probabilistic atlas (Wang et al., 2014). Medial temporal 
lobe ROIs, including the parahippocampal cortex, hippocampus, and entorhinal cortex (ERC), 
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were anatomically defined using individual subject segmentations provided by FreeSurfer 
(Fischl, 2012). 

Representational Similarity Analysis 

Our key analyses were based on representational similarity analysis (Kriegeskorte et al., 2008). 
The subsections below explain the details of how we computed representational dissimilarity 
matrices (RDMs) based on hypothetical representational spaces and actual neural signals (fMRI 
or EEG), and how we measured the unique representation of each spatial feature using the partial 
correlation approach (Dobs et al., 2019; Lu & Golomb, 2024). All analyses were implemented 
using customized code adapted from the NeuroRA toolbox (Lu & Ku, 2020). 

Hypothesis-based Representational Dissimilarity Matrices (RDMs) 

We constructed nine hypothesis-based spatial feature RDMs, each reflecting a distinct spatial 
feature dimension (Figure 1E). 

For the x, y, and z RDMs, we extracted the respective Cartesian coordinates (horizontal, vertical, 
and depth positions) of the 64 stimulus locations along the X-, Y-, and Z-axes. Each RDM was 
constructed as a 64 × 64 matrix where each cell reflects the dissimilarity along the given spatial 
dimension between a pair of two stimulus positions. For example, to compute the spatial 
dissimilarity between a stimulus centered at position #18 (x=-1.5°, y=-4.5°, z=-1.5°) and a 
stimulus centered at position #51 (x=4.5°, y=-4.5°, z=1.5°), we would calculate the absolute 
differences in their x, y, and z locations, respectively. This would produce a dissimilarity value of 
6 for that cell of the X-RDM, a 0 for the Y-RDM, and a 3 for the Z-RDM. These hypothesis-
based RDMs reflect the representational similarity patterns expected if the brain represented 
purely horizontal (x), vertical (y), or depth (z) information. 

For the r and θ RDMs, we analogously extracted the respective Polar coordinates (radius and 
polar angle) of the 64 stimulus locations along the r- and θ-axes. For r, we computed the 2D 
radial distance from each location to the fixation point on the screen. For θ, we calculated the 
corresponding polar angle relative to the positive X-axis within the 2D plane. For each of these, 
the RDMs were computed as the absolute difference in radius or polar angle between each pair 
of stimulus conditions. 

For the r-3D RDM, we computed the 3D radial distance from each stimulus location to the 
fixation point on the screen in the 3D space. For the Φ RDM, we calculated the angle between 
the 3D direction vector from the fixation point on the screen to each location and the positive Z-
axis. For the r-3D-head-centered RDM and the Φ-head-centered RDM, we computed the 3D 
Euclidean distance (3D head-centered radius) and 3D head-centered polar angle from each 
location to the participant’s head position as the reference point in the 3D space. For each of 
these, dissimilarity values in the RDM were defined as the absolute differences in these 
dimensions between each pair of conditions. 
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Additionally, we constructed two additional hypothesis-based geometric distance RDMs, each 
reflecting the combined geometric relationships among different spatial locations in 2D or 3D 
space instead of the representations of individual spatial feature dimensions. For 2D geometric 
distance RDM, we computed the 2D Euclidean distance in the 2D space between every pair of 
stimulus locations as the dissimilarity. Similarly, for 3D geometric distance RDM, we computed 
the 3D Euclidean distance in the 3D space between every pair of stimulus locations as the 
dissimilarity. 

Neural RDMs 

EEG electrodes and fMRI voxels each aggregate signals from a mixture of neural sources and 
spatial locations, making it important to examine both univariate and multivariate dissimilarity 
measures of representational dissimilarity to consider two types of potential representational 
formats in the neural recordings. Univariate measures, such as mean amplitude differences, are 
sensitive to overall or large-scale differences in response strength, while multivariate measures, 
such as voxel-wise correlation, capture distributed spatial patterns across the scalp (for EEG) or a 
region of interest (from fMRI). Accordingly, we computed two types of RDMs for each 
timepoint in the EEG time series and each searchlight unit in the fMRI volume: one based on 
amplitude differences – the amplitude-based RDM, and one based on correlation distance – the 
pattern-based RDM. 

EEG timepoint-by-timepoint RDMs: For the amplitude-based RDMs, we discarded all spatial 
pattern information. At each timepoint, we computed the mean amplitude across all 63 channels 
for each stimulus location condition. The dissimilarity between any pair of conditions was then 
defined as the absolute difference between their mean amplitudes, yielding a 64 × 64 EEG 
amplitude-based RDM. For the pattern-based RDMs, we discarded absolute activation 
information by first z-scoring the values at each channel separately across all conditions. At each 
timepoint, we treated the 63-channel activation vector as a multivariate pattern and computed 
one minus the Pearson correlation coefficient between pairs of condition-specific vectors, 
resulting in a 64 × 64 EEG pattern-based RDM. 

fMRI searchlight RDMs: For the amplitude-based RDMs, we discarded spatial pattern 
information within each searchlight unit. For each stimulus location condition, we computed the 
mean activation (beta value) across all 27 voxels within a given searchlight 3 × 3 × 3 cube unit. 
The dissimilarity between any pair of conditions was defined as the absolute difference between 
their mean activations, resulting in a 64 × 64 amplitude-based RDM for each searchlight. For the 
pattern-based RDMs, we discarded absolute activation information by first z-scoring voxel 
responses across conditions within each searchlight. Each condition-specific response was 
treated as a multivoxel pattern, and dissimilarity between pairs of conditions was computed as 
one minus the Pearson correlation between their voxel-wise activation vectors, yielding a 64 × 
64 pattern-based RDM per searchlight unit (across brain space). 
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fMRI ROI-based RDMs: In addition to the searchlight RDMs, we computed a set of RDMs 
within predefined ROIs. For each ROI and participant, we extracted the voxel-wise beta weights 
for all 64 spatial location conditions. For the amplitude-based RDMs, we discarded voxel-level 
spatial pattern information by computing the mean beta value across all voxels in the ROI for 
each condition. Dissimilarity between condition pairs was defined as the absolute difference 
between their mean activation values, resulting in a 64 × 64 amplitude-based RDM per ROI. For 
the pattern-based RDMs, we first z-scored the voxel-wise beta values across conditions within 
each ROI to remove mean-level activation differences. Each condition-specific voxel activation 
pattern was then compared using one minus the Pearson correlation coefficient, yielding a 64 × 
64 pattern-based RDM for each ROI. 

Partial correlations between neural and feature RDMs 

To evaluate how human brains represent different spatial features across time (EEG) and brain 
space (fMRI), we calculated the representational similarity between neural RDMs – temporal 
EEG RDMs, fMRI searchlight RDMs, or fMRI ROI RDMs – and the nine hypothesis-based 
feature RDMs described above. To isolate the unique contribution of each spatial feature and 
mitigate collinearity among feature RDMs, we used rank-based Spearman partial correlation 
analysis (Dobs et al., 2019; Lu & Golomb, 2024). Spearman correlation was chosen because it is 
robust to non-linear relationships and differences in scale across RDMs, making it well-suited for 
comparing representational dissimilarity structures. Specifically, for each 64 × 64 RDM, we 
extracted the upper triangular values excluding the diagonal (2,016 dissimilarity values) and 
reshaped them into a 1×2,016 vector. We then computed the partial correlation between a given 
neural RDM vector and each target feature RDM vector (e.g., the x RDM), while statistically 
controlling for the remaining eight vectors corresponding to the other eight feature RDMs. This 
procedure removed shared variance with other spatial features and yields a measure of the unique 
representational similarity for the target feature dimension for each EEG timepoint and fMRI 
searchlight or ROI. 

Similarly, to evaluate whether there is also evidence of processing 2D and 3D location 
holistically which reflects the combined geometric relationships in 2D or 3D space rather than 
the individual feature dimensions, we calculated the partial correlation between a given neural 
RDM vector and each geometric distance RDM vector (2D or 3D geometric distance RDM), 
while statistically controlling for the alternative geometric distance RDM. Additionally, we also 
conducted a version of this analysis taking the partial correlation between a given neural RDM 
vector and each geometric distance RDM vector, while statistically controlling for all feature 
RDM vectors as well. This procedure removed shared variance with all individual spatial 
features and the alternative integration representation and yields a measure of the unique 
representational similarity for the 2D or 3D geometric distance representation regardless of the 
feature- or coordinate-level encoding format. 
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As noted above, we constructed two versions of the neural RDMs at each EEG timepoint and 
fMRI searchlight/ROI – an amplitude-based RDM and a correlation-based RDM. Rather than 
choose one over the other, since they both capture potentially relevant aspects of the neural 
signal, we conducted the partial correlation analysis described above for both types of neural 
RDMs separately and then took the maximum. (Figures S10-S16 show the separate results from 
amplitude- and pattern-based RDMs.) We defined our robust summary estimate of the final 
representational similarity for each feature × timepoint (and feature × brain region) as the 
maximum of these two measures rather than the average because the two measures capture 
complementary aspects of the neural signal. By taking the maximum, we ensure that if one 
metric robustly reflects the underlying representation in a given time window or a given brain 
region – despite potential noise or variations in sensitivity – the overall analysis will not 
underestimate the representational strength. This conservative approach minimizes the risk of 
overlooking a genuine representation that may be captured preferentially by one metric over the 
other.  

Statistical Significance: Permutation Tests 

To assess the statistical significance of group-level representational similarity for each spatial 
feature, we performed permutation-based tests. For each participant and each neural RDM (EEG 
temporal RDMs, fMRI searchlight RDMs, or fMRI ROI RDMs), we first extracted the 2,016 
unique dissimilarity values from the upper triangle of the 64 × 64 matrix and permuted these 
values 1,000 times to generate null RDMs. For each permutation, we computed the partial 
correlation between the permuted neural RDM and each of the nine model RDMs, while 
controlling for the remaining eight as described above. The resulting partial correlations were 
then averaged across participants to form a group-level null distribution for each spatial feature. 
To evaluate significance, we compared the true group-level partial correlation (based on 
unshuffled neural RDMs) to its corresponding null distribution. A feature was considered 
significantly represented if the true group-level similarity exceeded the 99th percentile of the null 
distribution (one-sided test, p < 0.01). For EEG temporal and fMRI searchlight analyses, we 
further applied cluster-based correction across contiguous timepoints or spatial units to control 
for multiple comparisons. For ROI-based analyses, no cluster correction was applied due to the 
absence of spatial or temporal continuity.· 

 

 

Data Availability 

All data and code will be freely available post-publication on GitHub and OSF. 
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Supplementary 

 
Figure S1. 2D minus depth representations from correlation-based RSA results. 
Additional contrast analysis between 2D (averaging x and y) and depth (z) based on correlation-based 
RSA results replicated the finding of the spatial transition from 2D to depth along the visual hierarchy in 
(Finlayson et al., 2017). 

  

Difference of Representational Similarity
2DDepth

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2025. ; https://doi.org/10.1101/2025.08.03.668371doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.03.668371
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure S2. Number of significant 2D or 3D spatial features. 
Number of significant 2D or 3D spatial features (A) over time from EEG and (B) across brain space. 
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Figure S3. Emergent representations of 3D coordinate systems. 
As a less stringent version of the “complete” representations of 3D coordinate systems (Figure 5), the 
representation of a coordinate system was considered “emergent” if (1) the average representation 
similarity across its internal features significantly exceeded zero, and (2) at lease one coordinate-specific 
feature – i.e., a feature uniquely associated with that 3D coordinate system – was also significantly 
represented. This emergent representation indicates that the brain shows a trendency to represent a certain 
coordinate system and processes at least part of that coordinate system. For instance, r is specific to the 
3D Cylindrical coordinate system, while x and y are unique to the 3D Cartesian system. 
(A) Left: Temporally significant emergent representation of 3D coordinates; Right: Time course of the 
significantly emergent representation for each 3D coordinate system. Thinkened lines and colored dots 
indicate significant timepoints (permutation test, cluster-corrected, p < .01). (B) Searchlight maps of 
emergent coordinate representations (permutation test, cluster-based corrected, p < .01). (C) Differential 
maps showing Cartesian minus Polar representations for 3D coordinates (permutation test, cluster-based 
corrected, p < .01). Here, we computed voxelwise differences between 3D Cartesian and 3D Polar 
representations. (We created a unified 3D Polar map by taking the voxelwise maximum of the emergent 
representations across 3D Cylindrial, 3D Spherical, and 3D Spherical (head-centered) systems, and 
subtracted this from 3D Cartesian map.) The resulting contrast maps revealed dissociated neural 
organizations of Cartesian and Polar representations. 
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Figure S4 Correlation between behavioral depth magnitude gain and neural encoding in fMRI. 
Each dot represents one participant. Shaded area indicates 95% confidence interval for the fitted 
regression line. 
  



 
Figure S5. Correlation-based EEG RSA results of spatial features without controlling for shared 
variances from amplitude- and pattern-based EEG RDMs. 
Time-resolved representational similarity (Spearman correlation) results between EEG temporal (A) 
amplitude- or (B) pattern-based RDMs and nine hypothesis-based feature RDMs, grouped by spatial 
coordinate systems: Cartesian (x, y, z), Cylindrical (r, θ, z), Spherical (r-3D, θ, Φ), and Spherical-hc (r-
3D-hc, θ, Φ-hc). Shaded areas indicate ±1 SEM across participants. Colored dots indicate significant 
timepoints (permutation test, cluster-corrected, p < .01). 
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Figure S6. Correlation-based EEG RSA results of geometric distance representation without 
controlling for shared variances from amplitude- and pattern-based EEG RDMs. 
Time-resolved representational similarity (Spearman correlation) results between EEG temporal 
amplitude- or pattern-based RDMs and two hypothesis-based geometric distance RDMs. Shaded areas 
indicate ±1 SEM across participants. Colored dots indicate significant timepoints (permutation test, 
cluster-corrected, p < .01). 
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Figure S7. Correlation-based fMRI RSA results without controlling for shared variances from 
amplitude-based fMRI RDMs.  
Searchlight representational similarity (Spearman correlation) results between fMRI searchlight 
amplitude-based RDMs and eleven hypothesis-based RDMs (permutation test, cluster-based corrected, p 
< .01). 
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Figure S8. Correlation-based fMRI RSA results without controlling for shared variances from 
pattern-based fMRI RDMs. 
Searchlight representational similarity (Spearman correlation) results between fMRI searchlight pattern-
based RDMs and eleven hypothesis-based RDMs (permutation test, cluster-based corrected, p < .01). 
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Figure S9. Individual disparity-depth functions derived from the Cube Adjustment Task. 
Each panel shows data from one participant (Sub-01 to Sub-10), plotting the relationship between 
reference distance (in degrees of visual angle) and the perceptual matched binocular disparity (in arcmin) 
required to perceive a cube with equal 2D and depth dimensions. Each blue dot represents a single trial in 
which participants adjusted the relative front-back disparity of four RDS patches to form a perceptually 
cube shape. Red lines indicate the best-fitting linear function (intercept fixed at zero) obtained via least 
squares regression. These individualized functions were used to convert 3D spatial positions into 
participant-specific disparity values in the EEG and fMRI main task. 
  



 
Figure S10. Partial correlation-based EEG RSA results of spatial features from amplitude- and 
pattern-based EEG RDMs. 
Time-resolved representational similarity (partial Spearman correlation) results between EEG temporal 
(A) amplitude- or (B) correlation-based RDMs and nine hypothesis-based feature RDMs, grouped by 
spatial coordinate systems: Cartesian (x, y, z), Cylindrical (r, θ, z), Spherical (r-3D, θ, Φ), and Spherical-
hc (r-3D-hc, θ, Φ-hc). Shaded areas indicate ±1 SEM across participants. Colored dots indicate 
significant timepoints (permutation test, cluster-corrected, p < .01). 
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Figure S11. Partial correlation-based EEG RSA results of geometric representation from 
amplitude- and pattern-based EEG RDMs. 
Time-resolved representational similarity (partial Spearman correlation) results between EEG temporal 
amplitude- or correlation-based RDMs and two geometric distance RDMs. Shaded areas indicate ±1 SEM 
across participants. Colored dots indicate significant timepoints (permutation test, cluster-corrected, p 
< .01). 
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Figure S12. Partial correlation-based EEG RSA results of unique geometric representation from 
amplitude- and pattern-based EEG RDMs. 
Time-resolved representational similarity (partial Spearman correlation, also controlling nine feature 
RDMs) results between EEG temporal amplitude- or correlation-based RDMs and two geometric distance 
RDMs. Shaded areas indicate ±1 SEM across participants. Colored dots indicate significant timepoints 
(permutation test, cluster-corrected, p < .01). 
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Figure S13. Partial correlation-based fMRI RSA results of spatial features from amplitude-based 
fMRI RDMs.  
Searchlight representational similarity (partial Spearman correlation) results between fMRI searchlight 
amplitude-based RDMs and nine hypothesis-based feature RDMs (permutation test, cluster-based 
corrected, p < .01). 
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Figure S14. Partial correlation-based fMRI RSA results of spatial features from pattern-based 
fMRI RDMs.  
Searchlight representational similarity (partial Spearman correlation) results between fMRI searchlight 
pattern-based RDMs and nine hypothesis-based feature RDMs (permutation test, cluster-based corrected, 
p < .01). 
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Figure S15. Partial correlation-based fMRI RSA results of geometric distance representation from 
amplitude- and pattern-based fMRI RDMs.  
Searchlight representational similarity (partial Spearman correlation) results between fMRI searchlight 
pattern-based RDMs and two hypothesis-based geometric distance RDMs (permutation test, cluster-based 
corrected, p < .01). 
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Figure S16. Partial correlation-based fMRI RSA results of unique geometric distance 
representation from amplitude- and pattern-based fMRI RDMs.  
Searchlight representational similarity (partial Spearman correlation, also controlling nine feature RDMs) 
results between fMRI searchlight pattern-based RDMs and two hypothesis-based geometric distance 
RDMs (permutation test, cluster-based corrected, p < .01). 
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(See the video via the link: 
https://github.com/ZitongLu1996/3D_Visual_Perception/blob/master/video.mp4) 

Video S1. Visualization of combined EEG and fMRI RSA results of spatial feature representations.  
In this video, if the EEG RSA result of a certain spatial feature is significant, we highlighted the 
corresponding significant fMRI RSA result of the feature on inflated cortical surfaces (based on Figure 
3A and 4A). 
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